Mechanical Systems Existing Conditions Report

Philadelphia School District Administration Headquarters 440 North Broad Street, Philadelphia, PA

Prepared for Dr. William Bahnfleth Professor The Pennsylvania State University, Department of Architectural Engineering

> By Jayme Antolik Mechanical Option Dr. Bahnfleth Monday, November 21, 2005

Table of Contents

Executive Summary	2
PART I: Mechanical System Design Conditions	3
Design Objective and Requirements	3
Energy Sources and Rates	4
Cost and Site Factors	5
Indoor/Outdoor Design Conditions	6
Ventilation Comparison	7
Design Load Comparison	8
Annual Energy Utilization Data	9
PART II: Conceptual Description of the Mechanical System	10
Schematic Drawings	10
Abbreviations	10
Cooling Tower-Air Handling Unit Schematic	11
Supply Air Schematic	12
Fan Power Box Terminal Unit Detail	13
System Operation Description	14
Equipment Schedules	15
Cooling Tower	16
Filtration System	16
Pump	16
Fan Power Box Terminal Unit	17
Self Contained Packaged Unit	18
Inline Exhaust Fan	19
Roof Exhaust Smoke Purge	20
Roof Exhaust Toilet	20
Propeller Exhaust	21
Centrifugal Outdoor Air	21
System Critique	22
References	23

Appendices:

Appendix A	Building AHU Systems Overview	24
Appendix B	Trace Energy Analysis	27

Executive Summary

A system analysis was completed on Philadelphia School District (PSD) Administration Headquarters in Philadelphia, PA. Part I of the analysis focused on design objectives, cost concerns, site factors, indoor/outdoor conditions, load calculations, and energy use. Part II focused on what was installed in the administration building.

Prior to moving into this new location on 440 North Broad, PSD occupied four buildings in different locations. One of the main objectives was to move everyone into one building where it was easily accessed by both the employees and the public. This was accomplished by choosing this site which is very close to City Hall. Another objective was to keep their employees and visitors happy. Since most would agree that natural light has a big impact on someone's mood and ability to produce, the designers focused on a central atrium space that provided connectivity between both the 15th Street and Broad Street entrances, making the space inviting to workers and guests.

Choosing electricity as the primary energy source gives system with a cheap first cost and one that is easily manageable as well. This was a concern for the district because they wanted a reliable system that would require their maintenance engineers to provide little service to the equipment.

In Technical Assignment #2, Trane's Trace program was used to assess the building's energy usage and operating cost. The total kilowatt-hours used by the building was calculated to be 9,963,009 per year. The following chart gives the distribution of energy use by different components of the building.

Energy Consumption Breakdown		
primary heating	0.23%	
primary cooling	31.06%	
supply fans	5.25%	
lighting	63.47%	
Total	100.00%	

The total estimated energy cost for the year in the Administration building is \$419,177.84. Mechanical system operating cost is \$153,137.97 per year, about 36.53% of the total operating cost.

The loads within the building were analyzed using Trace in Assignment #2. By trying to match what actually exists in the building after design, it was noticed that the air handling units were sized about 10% larger than estimated by the program, a common design practice.

The air handling unit system in the Administration Headquarters, comprised of 17 main units all equipped with an economizer and an evaporator coil for. The outdoor air is provided through a pressurized ducted shaft to the mechanical room where it is mixed freely with return air from the space. Variable fan powered boxes are provided with a reheat coil for heating. This system may have been cheaper initially, but may require more inefficient energy usage in the long run.

PART I: Mechanical System Design Conditions

Design Objective and Requirements

The Philadelphia School District Administration Headquarters was originally built as a printing facility in 1948. Three existing packaged air handling units were kept for core space while a total of 17 packaged DX units were added within the building. When designing the shell and core renovations a few main objectives were kept in mind. These objectives were first cost, maintenance, site, and the visual connectivity of both the 15th Street and Broad Street entrances via an atrium and natural light.

The packaged direct exchange air handling units on each floor are provided with individual waterside economizers and electric heating coils. Compared to an air side economizer, the water side economizer was chosen because of its lower initial cost and the need for less shaft and mechanical room space. The air- versus waterside economizer topic is further discussed in the "Cost and Site Factors" of this paper.

Electricity was chosen as the medium of heating rather than steam for ease of maintenance. A steam system would require maintenance engineers to replace valves and other parts of a steam system. They would have to do this during off business hours requiring the district to pay overtime or pay for another shift of workers. The electric system will require much less maintenance. With the electric heating coil combined in the packaged unit, installation would be easier as well.

PSD wanted to bring their administration together under one roof. Previously, they were spread out among four offices within Philadelphia. After managing to find 440 North Broad, they were able to centralize their system. Read more in the "Cost and Site Factors" part of this paper.

The atrium space was another driving factor in the initial design. The introduction of natural light was used as a visual connection between the 15th Street and Broad Street entrances. This served two purposes. It allowed the building to be more inviting to visitors and also would keep employees content with their work environment, a necessity in efficient production. The design of this space was costly, requiring much structural attention and special mechanical attention aimed at smoke purge. However, the aesthetics of the design were superior to the price of design.

Energy Sources and Rates

The source of energy for the Philadelphia School District Administration Headquarters is all electric provided by Philadelphia Electric Company. See rates in the following chart:

PECO Unbundled Rates [10/28/03]			
Fixed Distribution Service Charge		\$286.86	
Variable Distribution Service Charge			
Demand		\$1.66	
1st 150 hours of billed den	nand	\$0.0088	
2nd 150 hours of billed de	mand	\$0.0052	
All other KWH		\$0.0016	
Competitive Transition Charge			
Demand		\$3.61	
1st 150 hours of billed den	nand	\$0.0194	
2nd 150 hours of billed de	mand	\$0.0115	
All other KWH		\$0.0038	
Energy and Capacity Charge			
Demand		\$5.91	
1st 150 hours of billed den	\$0.0453		
2nd 150 hours of billed de	\$0.0324		
All other KWH	\$0.0195		
Transmission Charge			
Demand		\$0.80	
1st 150 hours of billed den	nand	\$0.0043	
2nd 150 hours of billed de	mand	\$0.0025	
All other KWH		\$0.0008	
TOU Adjustment	Summer	Winter	
	June-Sept	Oct-May	
Off-Peak Credit	(\$0.0021)	(\$0.0021)	
On-Peak Charge	\$0.0057	\$0.0022	

The total estimated energy cost for the year in the Administration building is \$419,177.84. Mechanical system operating cost is \$153,137.97 per year, about 36.53% of the total operating cost.

Cost and Site Factors

When considering first cost, both air side and water side economizers were compared for the packaged direct exchange air handling units. Air side economizers would require large intake and relief louvers on the exterior of the building taking away windows and therefore natural light. Natural light was an important part in both objectives. With the school district using this building as an office building for its administration, it was important to keep spaces well lit with as much natural light as possible. Air side economizers would also require the splitting of condenser water and electrical risers requiring more shaft space and almost twice as many mechanical rooms. Although the air side economizer would not require the cooling tower to operate in the winter (less maintenance), the first cost of the system was the driving factor in design. The water side economizer cost less initially.

The site of the new School District Administration Headquarters building was important during the initial planning of this project. Originally the district had offices spread out at different locations within Philadelphia. The administration wanted all employees to work in one centralized easily accessible location. The new property is located on North Broad and 15th Street between Callowhill and Buttonwood Streets, six blocks north of City Hall and adjacent to the historic Inquirer Building. This centralized location is readily accessible since it is served by public transportation. Services will be more efficient since all administration will be located in one building.

Indoor/Outdoor Design Conditions

Design outdoor air conditions used were taken from the ASHRAE Handbook of Fundamentals 1997 for a location in Philadelphia, PA. The summer design temperature was 92°F dry bulb and 75°F wet bulb. The winter design dry bulb was 11°F.

Indoor design conditions were considered a typical 75°F and 50% relative humidity for all office spaces. Air is provided at 55°F by the air handling units and reheated by reheat coils to supply indoor spaces.

Ventilation Comparison

The required outdoor air intake flow was calculated using ASHRAE Standard 60.1 as a design guideline in Technical Assignment #1. All calculated outdoor air complied with the requirements of Standard 60.1.

AHU Summary				
Units	Zone Primary Airflow	Outdoor Air Intake Flow Required	Supplied Outdoor Air Fraction	Outdoor Air Supplied
	cfm	cfm		cfm
AHU1.1	28000.0	2425.0	0.10	2800.0
AHU1.2	28000.0	2425.0	0.10	2800.0
AHU1.3	28000.0	2500.0	0.10	2800.0
AHU1.4	28000.0	2500.0	0.10	2800.0
AHU1.5	28000.0	2687.5	0.10	2800.0
AHU2.1	31500.0	2800.0	0.10	3150.0
AHU2.2	31500.0	2800.0	0.10	3150.0
AHU2.3	31500.0	2800.0	0.10	3150.0
AHU2.4	31500.0	2800.0	0.10	3150.0
AHU3.1	35000.0	2800.0	0.10	3500.0
AHU3.2	35000.0	2800.0	0.10	3500.0
AHU3.3	35000.0	2800.0	0.10	3500.0
AHU3.4	35000.0	2800.0	0.10	3500.0
AHU3.5	32000.0	2725.0	0.10	3200.0
AHU4.1	35000.0	3450.0	0.10	3500.0
AHU5.1	28000.0	2068.8	0.10	2800.0
AHU5.2	28000.0	2068.8	0.10	2800.0

Design Load Comparison

Trane's Trace program was used to calculate the building's cooling and ventilation load in Technical Assignment #2. Once these values were found, they were compared to those on the Air Handler Unit schedules from the design documents. The following chart shows a summary of the calculations. By trying to match what actually exists in the building after design in Trace, it was noticed that the air handling units were sized using the load in ton per space. Calculated airflow rates for the supply and ventilation air were higher than those scheduled because lighting loads were assumed to be 6 W/sf and the amount of people used in the simulation was higher than what was used to calculate the outdoor air. **Appendix B** shows more detailed results of the load calculations.

Energy Analysis Summary							
		Lo	ad	Supp	ly Air	Ventila	tion Air
		Calculated	Scheduled	Calculated	Scheduled	Calculated	Scheduled
AHU	Space	ton	ton	cfm	cfm	cfm	cfm
1.1 & 1.2	1S	135.3	160	72755	56000	6713	5600
1.3 & 1.4	1N	144.2	160	79305	56000	6993	5600
1.5	1T	76.2	80	42083	28000	3846	2800
2.1 & 2.2	2S	161.4	180	86677	63000	8112	6300
2.3 & 2.4	2N	161.4	180	85981	63000	8112	6300
3.1 & 3.2	3S	166.9	200	89275	70000	8112	7000
3.3 & 3.4	3N	184.3	200	93138	70000	8112	7000
3.5	3T	85.1	90	43072	32000	3916	3200
4.1	4	147.1	100	78823	35000	6993	3500
5.1 & 5.2	5	124.9	160	63691	56000	5385	5600

Annual Energy Utilization Data

Because the Administration building was just opened for the current school year, actual energy data was not available. Energy utilization was estimated using Trane's Trace program in Technical Assignment #2. The Philadelphia School District Administration Headquarters building uses electricity as its source of energy. The engineer used electric heat for maintenance and operational reasons that suited the School District better than alternatives like steam. Since it is an office building a schedule based on a 8:00am to 6:00pm work period was assumed. Total kilowatt-hours used for the building was calculated to be 9,963,009 per year. Here is a simple pie chart showing energy consumption in the building and a more detailed spreadsheet explaining the same.

Energy Consumption Summary				
	Electric Consumption	Water Consumption	Percent of Total Energy	Total Source Energy
	(kWh)	(1000 gals)	%	(kBtu/yr)
Primary Heating				
Primary Heating	22,886.6		0.23%	2,343.6
Primary Cooling				
Cooling Compressor	1,205,562.1		12.10%	123,449.9
Tower/Condenser Fans	530,514.4	6,765.2	5.32%	54,324.8
Condenser Pumps	1,357,507.6		13.63%	139,009.1
Other Cooling Accessories	723.2		0.01%	74.1
Cooling Subtotal	3,094,307.3	6,765.2	31.06%	316,857.8
Auxillary				
Supply Fans	522,585.5		5.25%	53,512.9
Circulation Pumps			0.00%	0.0
Base Utilities			0.00%	0.0
Auxillary Subtotal	522,585.5		5.25%	53,512.9
Lighting				
Lighting	6,323,229.0		63.47%	647,500.2
Totals	9,963,008.4	6,765.2	100.00%	1,020,214.5

Energy Consumption

PART II: Conceptual Design of the Mechanical System

Schematic Drawings

For the following schematics, the following abbreviations and symbols may be used:

ABBREVIATIONS AND SYMBOLS LIST			
AHU	AIR HANDLING UNIT	Т	THERMOSTAT
CWP	CONDENSER WATER PUMP	P	PRESSURE SENSOR
CWR	CONDENSER WATER RETURN	\bigcirc	
CWS	CONDENSER WATER SUPPLY		ANALOG INPUT [TEMPERATURE/PRESSURE]
FPB	FAN POWER BOX	AO	ANALOG OUTPUT
GPM	GALLONS PER MINUTE	DI	DIGITAL INPUT
MER	MECHANICAL ROOM		
OA	OUTDOOR AIR	DO	DIGITAL OUTPUT
SA	SUPPLY AIR	SMOKE	SMOKE DETECTOR
ТҮР	TYPICAL	M	MOTORIZED DAMPER
	DIRECTION OF FLOW	16	ELECTRICAL CONNECTION (DIV 16)
——————————————————————————————————————	ELECTRICAL CONNECTION (DIV 15)	\otimes	BALANCING VALVE
R	SOLENOID VALVE	\bowtie	2 WAY VALVE
∠ 9	BALANCING VALVE		STRAINER W/ BLOWDOWN VALVE
	FLOW METER	X	

Jayme Antolik Mechanical Option Philadelphia School District Administration Headquarters Technical Assignment #3

Jayme Antolik Mechanical Option Philadelphia School District Administration Headquarters Technical Assignment #3

Jayme Antolik Mechanical Option Philadelphia School District Administration Headquarters Technical Assignment #3

FAN POWER BOX TERMINAL UNIT DETAIL

13

System Operation Description

<u>Cooling and Heating</u>: McQuay's self contained direct exchange air handling units with electric heating coils are used to heat and cool all office space within the Philadelphia School District Administration Headquarters building. Within the air handler itself the condenser, compressor, and expansion valves are not in the supply air stream. This allows for easy access and maintenance. The components within the supply air stream are the filter, economizer coil, evaporator, heater and fan. See **Appendix A** for AHU layout within the building.

<u>Cooling Tower/Chemical Treatment</u>: A two-celled cooling tower provides condenser water at 85°F to an automatic chemical feed unit and a side stream filtration system where it is treated.

<u>Condenser Pumps</u>: Two condenser water pumps connected in parallel provide water to each air handler.

<u>Outdoor Air Fans</u>: Outdoor air fans provide outdoor air through plenum discharge with motorized damper control at each mechanical room.

<u>Return Air Plenum</u>: Return air is through plenum discharge as well.

<u>Waterside Economizer</u>: Each unit is equipped with a waterside economizer, which allows free cooling when the cooling tower water temperature is less than the unit entering air temperature by an adjustable value of 5-7°F. The economizer consists of one water coil and two two-way control valves. A control device modulates the control valves to satisfy the cooling demand whenever the entering water temperature is suitable (less than 50°F). When the entering water temperature is no longer suitable (greater than 50°F), the economized valves close and the unit is on 100% mechanical cooling.

<u>Miscellaneous Heat</u>: Electric cabinet heaters provide miscellaneous heat for the 15th Street and Broad Street lobbies. Electric baseboard heaters provide miscellaneous heat for the Broad Street foyer and ground floor toilet rooms. Unit heaters provide heat in the mechanical rooms.

<u>Smoke Purge</u>: Four smoke purge fans controlled by a motorized damper provide ventilation for the atrium space.

Equipment Schedules

Cooling Tower Schedule

COOLING TOWER SCHEDULE				
UNIT NUMBER CT-6.1				
LOCATION			5TH FL ROOF	
	TYPE		INDUCED-DRAFT	
NOM	INAL TONS		1500	
NUMBE	ER OF CELLS		2	
		IN	95	
WATER DATA		TUC	85	
	TOTAL GPM		4371	
	INLET PRESS DROP (I	PSI)	3.2	
AMBIENT TEN	MPERATURE (F) WB		78 F WB	
	TOTAL NO. OF FAN	S	2	
FANS DATA (EACH)	CFM		310260	
	TYPE DRIVE		BELT	
	QUANTITY / HP EAC	H	2 @ 50 HP EA.	
MOTORS (EACH)	ENCL. TYPE		TEAC	
	VOLTS / PH / HZ		460 / 3 / 60	
BAS	ÍN HEATER		2 @ 9 KW EA.	
MANU	JFACTURER		EVAPCO	
OPERATIN	IG WEIGHT (LBS)		43500	
OVERALL DI	MENSIONS (LxWxH)		24'-1-1/8"x18'x18'-6-1/2"	
REMARKS: 3 PROBE ELECTRIC WATER LEVEL CONTROL				
EXTERNAL SERVICE PLATFORM W/ LADDER,				
LADDER EXTENSION				
SAFETY CASE, SAFETY CASE EXTENSION				
MOTOR DAVIT W/ BASE				
SUMP SWEEPER PIPING				
PROVIDE VARIABLE FREQUENCY DRIVE				

Filtration Schedule

FILTRATION SYSTEM SCHEDULE			
UNIT	NO.	FA-5.1	
SER	VICE	CT-6.1	
MANUFACTURER		LAKOS	
FLOW (GPM)		825	
PUM	P HP	20	
SVSTEM	INLET	8"	
OUTLET		6"	
ELECTRIC	CAL DATA	460 / 3 / 60	

Pump Schedule

PUMP SCHEDULE			
	UNIT NO.	CWP-5.1	CWP-5.2
	SERVICE	CT-6.1	CT-6.1
	GPM	4371	4371
+	HEAD (FT)	160	160
	MANUFACTURER	BELL & GOSSETT	BELL & GOSSETT
	FRAME SIZE	444T	444T
DATA	NPSH	20.9	20.9
	RPM	1770	1770
MOTOR	BHP	231.73	231.73
	HP	250	250
DATA	VFD	NO	NO
	ELECT.	460 / 3 / 60	460 / 3 / 60
W	EIGHT (LB)	3080	3080
	REMARK	INERTIA BASE	INERTIA BASE

Abbreviations:

CWP Condenser Water Pump

Fan Power Box Terminal Schedule

FAN POWER BOX TERMINAL UNIT SCHEDULE			
UNIT	NO.	FPB-A	
INLET DUCK	(SIZE (DIA.)	14"	
	MIN. CFM	900	
AIN QUANTITI	MAX. CFM	1500	
FAN MOTOR HP		3/4	
ELECTRICAL DATA		460 / 3 / 60	
ELECTRICAL I	HEATING (KW)	19	

Self Contained Packaged Unit Schedule – Floors 1 and 2

				SELI	CONTAIN	ED PACKA	GED UNIT	SCHEDUL	E			
		UNIT NO.		AHU-1.1	AHU-1.2	AHU-1.3	AHU-1.4	AHU-1.5	AHU-2.1	AHU-2.2	AHU-2.3	AHU-2.4
		LOCATION		FL1S	FL1S	FL 1 N	FL 1 N	FL 1 T	FL2S	FL 2 S	FL2S	FL 2 S
	M	ANUFACTUR	ER	MCQUAY	MCQUAY	MCQUAY	MCQUAY	MCQUAY	MCQUAY	MCQUAY	MCQUAY	MCQUAY
	_	τοτα	L CFM	28000	28000	28000	28000	28000	31500	31500	31500	31500
<	H	OA	CFM	2800	2800	2800	2800	2800	3150	3150	3150	3150
	RA CFM		CFM	25200	25200	25200	25200	25200	28350	28350	28350	28350
2	TOTAL S.P. (IN. WG.)		P. (IN. WG.)	4.72	4.72	4.72	4.72	4.72	4.28	4.28	4.28	4.28
< L	4 L	MIN. EXT. S	.P. (IN. WG.)	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
2	LT	FAN	RPM	1814	1814	1814	1814	1814	1223	1223	1223	1223
8	1	VAR. SPE	ED DRIVE	YES	YES	YES	YES	YES	YES	YES	YES	YES
	n	MOTOR	BHP	34.18	34.18	34.18	34.18	34.18	30.45	30.45	30.45	30.45
0)		MOTOR	HP	40	40	40	40	40	40	40	40	40
A.			TOTAL MBH	1150074	1150074	1150074	1150074	1150074	1179820	1179820	1179820	1179820
AT		CADACITY	SENS. MBH	802731	802731	802731	802731	802731	857069	857069	857069	857069
	A	CAPACITY	NOM. TON	80	80	80	80	80	90	90	90	90
Ň	LAC	ENTERING DB T (F)		80	80	80	80	80	80 80		80	80
DL	R	ENTERING WB T (F)		67	67	67	67	67	67	67	67	67
ğ	A	LEAVING	BDBT(F)	53.7	53.7	53.7	53.7	53.7	55	55	55	55
×		LEAVING	WBT(F)	53.6	53.6	53.6	53.6	53.6	54.9	54.9	54.9	54.9
Ď		MAX. P. D	. (IN. WG.)	0.78	0.78	0.78	0.78	0.78	0.75	0.75	0.75	0.75
ZER	ΓA	WATER FL (GF	.OW RATE PM)	226	226	226	226	226	239	239	239	239
ΞW	DA ^T	MAX, PRES	SURE DROP						200			200
9	L	(IN, FT	. WG.)	38.86	38.86	38.86	38.86	38.86	18.85	18.85	18.85	18.85
ō	0	AIR P. D.	(IN. WG.)	0.47	0.47	0.47	0.47	0.47	0.46	0.46	0.46	0.46
Ш	0	ROWS	S / FPI	4/12	4/12	4/12	4/12	4/12	4/12	4/12	4/12	4/12
001			# COMPR.	4	4	4	4	4	3 3	3 3	3 3	3 3
CON	VIPRES	SOR DATA	HP EACH	20	20	20	20	20	13 15	13 15	13 15	13 15
SER	TА	WATER FL (GF	.OW RATE PM)	226	226	226	226	226	239	239	239	239
DENS	L DA	MAX. PRES	SURE DROP	10.26	10.26	10.26	10.26	10.26	5.99	5,99	5,99	5.99
NOC	COIL	WATER FL	OW EWT /	95 / 07 7	95 / 07 7	95 / 07 7	95 / 07 7	95 / 07 7	95/06 9	95/06 9	95/06.9	95/06 9
DDE	HEAT	ELECTRIC		05791.1	03791.1	03791.1	03791.1	05791.1	05790.0	05790.0	00/90.0	05790.0
COIL	DATA	COIL CAPA	ACITY (KW)	68	68	68	68	68	68	68	68	68
FIL	TER	TY	PE	30% EFF.	30% EFF.	30% EFF.	30% EFF.	30% EFF.				
DA	TA	THICKN	ESS (IN.)	4"	4"	4"	4"	4"	4"	4"	4"	4"

Abbreviations:

AHU Air Handling Unit

Self Contained Packaged Unit Schedule – Floors 3, 4, and 5

				SELF C	ON		IED P	ACKAG	GED U	JNIT S	CHE	DULE						
		UNIT NO.		AHU-3.	1	AHU	J-3.2	AHU	-3.3	AHU	J-3.4	AHU-3.5	AHU	J-4.1	AHU	J-5.1	AHU	U-5.2
		LOCATION		FL 3 S		FL	3 S	FL :	3 S	FL	3 S	FL 3 T	FL	3 S	FL	3 S	FL	38
	М	ANUFACTUR	ER	MCQUA	Y	MCC	YAUG	MCQ	UAY	MCC	QUAY	MCQUAY	MCC	QUAY	MCC	QUAY	MCC	YAUG
		τοτα	L CFM	35000		35	000	350	00	35	000	32000	35	000	280	000	28	000
ΔT		OA	CFM	3500		35	500	35	00	35	00	3200	35	00	28	00	- 28	800
	5	RA	CFM	31500		31	500	315	00	31	500	28800	31	500	252	200	25	200
N		TOTAL S.F	P. (IN. WG.)	4.81		4.	.81	4.8	31	4.	81	4.27	4.	81	4	.7	4	4.7
14 1	MIN. EXT. S.P. (IN. WG.)		.P. (IN. WG.)	2.3		2	.3	2.	3	2	.3	2.3	2	.3	2	.3	2	2.3
<u>></u>	5	FAN	RPM	1333		13	333	13	33	13	33	1233	13	33	18	12	- 18	812
	-	VAR. SPE	ED DRIVE	YES		Y	ES	YE	S	YI	ES	YES	YI	ES	YE	ES	Y	ES
	2	MOTOR	BHP	38.2		- 38	8.2	38	.2	- 38	3.2	30.39	- 38	3.2	34	.04	34	1.04
	·	moroix	HP	40		4	10	4	0	4	0	40	40		4	0	4	40
FA		COOLING	TOTAL MBH	144342	3	144	3423	1443	423	1443	3423	1048558	1443	3423	996	328	996	6328
IAT		CARACITY	SENS. MBH	100607	8	100	6078	1006	6078	100	6078	830433	100	6078	766	342	766	6342
	ΓA	CAFACITI	NOM. TON	100		1	00	10	0	- 10	00	90	1(00	8	0	ω.	80
ĭ	S DA	ENTERIN	G DB T (F)	80		8	30	8	0	8	0	80	8	80		80		80
Ы	RI	ENTERING	GWBT(F)	67		6	67	6	7	6	67	67	6	7	67		67	
DX COC	AI	LEAVING	GDBT(F)	53.6		53	3.6	53	.6	53	3.6	52.8	53	3.6	51	51.9		1.9
×		LEAVING	WBT(F)	53.5		53	3.5	53	.5	- 53	3.5	52.6	53	3.5	51	.8	5	1.8
D		MAX. P. D	. (IN. WG.)	0.91		0.	.91	0.9	91	0.	91	0.74	0.	91	0.	74	0.	.74
R		WATER FL	OW RATE															
IZE	ΔT	(GF	PM)	323		3	23	32	3	3	23	228	3	23	22	21	2	21
M	DA	MAX. PRES	SURE DROP															
N N	Ē	(IN. FT	. WG.)	32.2		32	2.2	32	.2	32	2.2	23.96	32	2.2	27	.47	27	7.47
8	8	AIR P. D.	(IN. WG.)	0.55		0.	.55	0.5	55	0.	55	0.46	0.	55	0.	47	0.	.47
ш		ROWS	S / FPI	4/12		4/	12	4/*	12	4/	12	4/12	4/	12	4/	12	4/	/12
COM			# COMPR.	3 3	}	3	3	3	3	3	3	6	3	3	2	2	2	2
001	II IKEC	BOILDIN	HP EACH	15 2	0	15	20	15	20	15	20	13	15	20	15	20	15	20
Ľ	٢	WATER FL	OW RATE															
SE	AT/	(GF	PM)	323		3	23	32	3	33	23	228	32	23	22	21	2	21
EN	D/	MAX. PRES	SURE DROP															
q	JIL	(IN. FT	. WG.)	6.78		6.	.78	6.7	78	6.	78	6.62	6.	78	11	.72	11	1.72
ō	ы С	WATER FL	OW EWT /															
0		LWI	T (F)	85 / 96.	1	85 /	96.1	85 / 9	96.1	85 /	96.1	85 / 96	85 /	96.1	85 /	85 / 96.1		96.1
PREF	IEAT	ELECTRIC	HEATING															
COIL	DATA	COIL CAPA	ACTLY (KW)	68	_	6	58	6	5	6	08	68	6	8	6	Ö	(58
FILT	ER	THORN		30% EF	F.	30%	EFF.	30%	EFF.	30%	EFF.	30% EFF.	30%	EFF.	30%	EFF.	30%	EFF.
DA	IA	THICKN	ESS (IN.)	4"		4	1	4		4	ł	4"	4	-	4	F.	4	4

Abbreviations:

AHU Air Handling Unit

Jayme Antolik Mechanical Option Philadelphia School District Administration Headquarters

Technical Assignment #3

Fan Schedules :: Inline Exhaust Fan Schedules

				EXHAUST	[INLINE] FAN SCH	IEDULE								
UNI	ΓNO.	EF-1.1	EF-1.2	EF-2.1	EF-2.2	EF-3.1	EF-3.2	EF-4.1	EF-4.2					
SER	VICE	FL 1 W ELEC RM	FL1EELECRM	FL 2 W ELEC RM	FL 2 E ELEC RM	FL 3 W ELEC RM	FL 3 E ELEC RM	FL 4 W ELEC RM	FL 4 E ELEC RM					
C	FM	500	500	500	500	500	500	500	500					
SP IN. WG.		0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375					
MANUFACTURER		LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK					
RPM		1375	1375	1375	1375	1375	1375	1375	1375					
MOTOR	BHP	-	-	-	-	-	-	-	-					
	HP	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25					
MOTOR	VFD	NO	NO	NO	NO	NO	NO	NO	NO					
	ELEC.	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60					
ROOF	EXH.													
PROP	ELLER													
CENTR	IFUGAL													
INL	INE	Х	Х	Х	Х	Х	Х	Х	Х					
REMARK														

			EXHAUS	T [INLINE] FAN SCH	HEDULE						
LINIT	UNIT NO. EF-5.1 EF-5.2 EF-6.1 EF-6.2 EF-6.3										
SER	VICE	FL 5 W FL FC RM	FL5 E ELEC RM	FLEV MACH RM			GR FL FMR				
C	FM	500	500	2000	2000	1450	500				
SP IN	.WG.	0.375	0.375	0.25	0.25	0.35	0.375				
MANUFA	CTURER	LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK	LOREN COOK				
RPM		1375	1375	1416	1416	1215	1375				
	BHP	-	-	-	-	-	-				
MOTOR	HP	0.25	0.25	0.5	0.5	0.25	0.25				
MOTOR	VFD	NO	NO	NO	NO	NO	NO				
	ELEC.	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60				
ROOF	EXH.										
PROP	ELLER										
CENTR	IFUGAL										
INL	INE	Х	Х	Х	Х	Х	Х				
REN	IARK			ROOF CL	JRB, BACK DRAFT	DAMPER					

Abbreviations:

EF Exhaust Fan

	SMC	KE PURGE [RO	OF EXHAUST] F	AN SCHEDULE					
UNIT	NO.	SPF-4.1	SPF-4.2	SPF-4.3	SPF-4.4				
SER	VICE	ATRIUM	ATRIUM	ATRIUM	ATRIUM				
CF	M	20000	20000	20000	20000				
SP IN	. WG.	0.75	0.75	0.75	0.75				
MANUFA	CTURER	GREEN HECK	GREEN HECK	GREEN HECK	GREEN HECK				
RF	PM	418	418	418	418				
	BHP	4.89	4.89	4.89	4.89				
MOTOR	HP	7.5	7.5	7.5	7.5				
	VFD	NO	NO	NO	NO				
	ELEC.	460 / 3 / 60	460 / 3 / 60	460 / 3 / 60	460 / 3 / 60				
ROOF	EXH.	Х	Х	Х	Х				
PROP	ELLER								
CENTR	IFUGAL								
INL	INE								
REM	ARKS	U. F RA	U.L. LISTED FOR SMOKE CONTROL PREFABRICATED ROOF CURB W/ RAISED CANT MOTORIZED DAMBER						

Fan Schedules :: Roof Exhaust Smoke Purge Fan Schedule

Abbreviations:

SPF Smoke Purge Fan

Fan Schedules :: Roof Exhaust Toilet Fan Schedule

	TOIL	ET IROOFI EXHAL	JST FAN SCHEDU	LE				
		TY_/ 1	TX-6 1	TX_6 2				
SED								
SER	VICE	FL 1-5 N TOILET	FL 1-5 5 TOILET	FL 1-5 E TOILET				
CH	-M	4500	7100	6900				
SP IN	. WG.	0.5	1	1				
MANUFA	CTURER	LOREN COOK LOREN COOK		LOREN COOK				
RF	PM	781	776	767				
	BHP	0.88	2.28	2.2				
MOTOR	HP	1	3	3				
WOTOR	VFD	NO	NO	NO				
	ELEC.	460 / 3 / 60	460 / 3 / 60	460 / 3 / 60				
ROOF	EXH.	Х	Х	Х				
PROP	ELLER							
CENTR	IFUGAL							
INL	INE							
REM	ARK	ROOF CURB, BACK DRAFT DAMPER						

Abbreviations:

TX Toilet Exhaust

Fan Schedules :: Propeller Exhaust Fan Schedule

	EXHA	UST [PROPE	LLER] FAN S	SCHEDULE					
UNIT	NO.	EF-B2.1	EF-B2.2	EF-G.1	EF-G.2				
SER	VICE	BASEM	ENT LVL	GROU	ND LVL				
CF	-M	3700	3700	3300	3300				
SP IN	. WG.	0.7	0.7	0.75	3300 0.7 COOK 899 1.2				
MANUFA	CTURER	LOREN	I COOK	LOREN	I COOK				
RF	PM	919	919	1424	899				
	BHP	1.26	1.26	1.09	1.2				
MOTOR	HP	1.5	1.5	1.5	1.5				
WOTOR	VFD	NO	NO	NO	NO				
	ELEC.	460 / 3 / 60	460 / 3 / 60	460 / 3 / 60	460 / 3 / 60				
ROOF	EXH.								
PROP	ELLER	Х	Х	Х	Х				
CENTR	IFUGAL								
INL	INE								
REM	ARKS	OSHA WIRE GUARD, WALL COLLAR WALL SHUTTER, WEATHER HOOD							

Abbreviations:

EF Exhaust Fan

Fan Schedules :: Centrifugal Outdoor Air Fan Schedule

	OUTDO	OOR AIR [CENTRIF	UGAL] FAN SCHE	DULE
UNIT	NO.	OAF-4.1	OAF-4.2	OAF-6.1
SER	VICE	FL 1, 2, 3 S MER	FL 1, 2, 3 N MER	FL 4, 5 MER
CF	M	25200	19200	8750
SP IN	. WG.	0.95	0.95	0.9
MANUFA	CTURER	LOREN COOK	LOREN COOK	LOREN COOK
RF	ΡM	571	603	928
	BHP	6.648	4.604	2.33
MOTOR	ΗP	7.5	5	3
WOTOR	VFD	NO	NO	NO
	ELEC.	460 / 3 / 60	460 / 3 / 60	460 / 3 / 60
ROOF	EXH.			
PROP	ELLER			
CENTR	IFUGAL	Х	Х	Х
INL	INE			
REM	ARKS	R MOTOF	OOF CURB, FILTE RIZED DAMPER 120	R, D / 1 / 60

Abbreviations:

OAF Outdoor Air Fan

System Critique

The Philadelphia School District decided to go with an all electric system. This provides many benefits to the district, including maintenance and operation. The self contained air handling units make the system easy to maintain with its condensers, expansion valves, and compressors outside of the supply air stream.

The atrium adds a welcoming feel to this old printing facility, however, something could have been done with operable skylights to provide natural ventilation. This would have to be looked carefully into because smoke purge is such an important part of designing an atrium space.

Steam was the other alternative to electric when planning this project. Although predicted to be slightly cheaper in first cost, it was decided against because of the maintainability it would require. Using electricity as the primary energy source can be inefficient. Other systems like under floor air distribution and even steam may be more efficient. Measuring first cost versus life cycle cost for these systems may allow a client to look at other options for future energy and thus monetary savings.

References

McQuay Catalog information:

http://www.mcquay.com/mcquaybiz/literature/lit_aa_sc/Brochures/ASP31-153.pdf http://www.mcquay.com/eprise/main/McQuayBiz/Lit_AA_SC/Catalogs/Cat860-5_screen.pdf

Mapquest, Map of 440 N Broad St Philadelphia, PA

CannonDesign, Documents for Philadelphia School District Administration Headquarters.

Hooper Shiles Architects, Documents and rendering for Philadelphia School District Administration Headquarters.

Past Penn State AE Thesis Technical Reports

Appendix A: Building AHU Systems Overview

The Administration building has a total **footprint area** of **161,000 square feet** (SF) with a total **gross area** of **848,000 SF**.

The building has a parallel fan-powered VAV system and is supplied by 17 new air handling units (AHUs) with supply air totaling 529,000 cubic feet per minute (CFM). Individual units are contained in mechanical rooms on the floor it is supplying. An example of an AHU's schedule number is 1.4, where 1 is the floor number and 4 is the unit's number on that floor. The following is a color-coded schedule of the unit layout by floor:

Floors 1 through 3 are broken up by a north half and a south half, each with its own mechanical room. The **first floor** has 5 AHUs, two serving the south half, two serving the north half and one serving the south tenant space (a double height space). The later AHU rises through a shaft to serve the space from the second floor ceiling.

Four AHUs serve the **second floor**: two serving the south half and two serving the north half.

The **third floor** has 4 AHUs, two serving the south half, two serving the north half and one serving the south tenant space (above the tenant space on the first floor).

One AHU serves the entire **fourth floor**.

The fifth floor has 2 AHUs, one serving the east half and one serving the west half.

A new architectural feature in the building is the **three story atrium** between floors 1 and 3. This space is served by AHU 4 on each floor (1, 2, and 3). It receives 15,000 CFM in total from these three air handling units.

Technical Assignment #3

Appendix B: Trace Energy Analysis

				Load	d / Airflo	w Sumi	mary						
					By	ae							
Description **		Floor Area ft*	People #	Coil Cooling Sensible Btu/h	Coil Cooling Total Btu/h	Space Design Max SA ofm	Air Changes ach/hr	VAV Minimum SA ofm	Main Coil Heating Sensible Btu/h	Heating Fan Max SA ofm	Perce 0A Clg	ent \ Htg	ASHRAE 62-89 OA fraction
FL-1 north	Rm/Zn Tot	50,000	349.7	1,486,382	1,731,268	79,317	7.61	0	0	0	8.8		
FL-1 NORTH	Sys Tot/Ave	50,000	349.7	1,486,382	1,731,268	79,317			0	0	8.8		
FL-1 NORTH	Sys Block	50,000	349.7	1,486,382	1,731,269	79,317			0	0	8.8		
FL-1 south	Rm/Zn Tot	48,000	335.7	1,388,268	1,623,499	72,787	7.28	D	0	D	9.2		
FL-1 SOUTH	Sys Tot/Ave	48,000	335.7	1,388,268	1,623,499	72,787			0	D	9.2		
FL-1 SOUTH	Sys Block	48,000	335.7	1,388,268	1,623,499	72,787			0	0	9.2		
FL-2 north	Rm/Zn Tot	58,000	405.6	1,654,524	1,938,535	86,613	7.17	D	0	D	9.4		
FL-2 NORTH	Sys Tot/Ave	58,000	405.6	1,654,524	1,938,535	86,613			0	0	9.4		
FL-2 NORTH	Sys Block	58,000	405.6	1,654,524	1,938,535	86,613			0	0	9.4		
FL-2 south	Rm/Zn Tot	58,000	405.6	1,655,716	1,939,938	86,812	7.18	D	0	D	9.3		
FL-2 SOUTH	Sys Tot/Ave	58,000	405.6	1,655,716	1,939,938	86,812			0	0	9.3		
FL-2 SOUTH	Sys Block	58,000	405.6	1,655,716	1,939,938	86,812			0	0	9.3		
FL-3 north	Rm/Zn Tot	58,000	405.6	1,938,663	2,210,844	93,260	7.72	D	0	0	8.7		
FL-3 NORTH	Sys Tot/Ave	58,000	405.6	1,938,663	2,210,844	93,260			0	0	8.7		
FL-3 NORTH	Sys Block	58,000	405.6	1,938,663	2,210,844	93,260			0	0	8.7		
FL-3 south	Rm/Zn Tot	58,000	405.6	1,730,733	2,002,881	89,318	7.39	D	0	D	9.1		
FL-3 SOUTH	Sys Tot/Awe	58,000	405.6	1,730,733	2,002,881	89,318			0	0	9.1		
FL-3 SOUTH	Sys Block	58,000	405.6	1,730,733	2,002,881	89,318			0	D	9.1		
FL-4	Rm/Zn Tot	50,000	349.7	1,530,480	1,765,111	78,987	10.53	D	0	0	8.9		
FL-4	Sys Tot/Ave	50,000	349.7	1,530,480	1,765,111	78,987			0	0	8.9		
FL-4	Sys Block	50,000	349.7	1,530,480	1,765,111	78,987			0	D	8.9		
FL-6	Rm/Zn Tot	38,500	269.2	1,318,426	1,499,119	63,814	11.05	0	0	0	8.4		
FL-5	Sys Tot/Ave	38,500	269.2	1,318,426	1,499,119	63,814			0	0	8.4		
FL-5	Sys Block	38,500	269.2	1,318,426	1,499,119	63,814			0	0	8.4		
tenant-fi1	Rm/Zn Tot	27,500	192.3	778,757	913,447	42,081	3.57	0	0	0	9.1		
TENANT FL-1	Sys Tot/Ave	27,500	192.3	778,767	913,447	42,081			0	0	9.1		
TENANT FL-1	Sys Block	27,500	192.3	778,757	913,447	42,081			D	D	9.1		
tenant-fl3	Rm/Zn Tot	28,000	195.8	889,943	1,021,424	43,081	3.59	0	0	0	9.1		
TENANT FL-3	Sys Tot/Ave	28,000	195.8	889,943	1,021,424	43,081			D	0	9.1		
TENANT FL-3	Sys Block	28,000	195.8	889,943	1,021,424	43,081			0	0	9.1		
Atrium	Rm/Zn Tot	7,220	216.8	416,063	567,951	16,379	2.90	0	-369,431	6,024	26.5	0.0	

** This report does not display heating only systems.

Project Name: 440 N. BOARD STREET Dataset Name: C:\Documents and Settings\jla260\Desktop\Energy.TRC TRACEB 700 v4.1 calculated at 03:48 PM on 10/25/2005 Atternative - 1 Load/Airflow Summary report page 1

				Load	/Airflo	w Sum	mary						
				By ae									
		Floor	People	Coil Cooling Sensible	Coil Cooling Total	Space Design Max SA	Air Changes	VAV Minimum SA	Main Coil Heating Sensible	Heating Fan Max SA	Perc 0/	ent A	ASHRAE 62-89
escription **		ft*	#	Btu/h	Btu/h	cfm	ach/hr	cfm	Btu/h	cfm	Clg	Htg	0A fractio
Atrium	Sys Tot/Ave	7,220	216.8	416,063	567,951	16,379			-369,431	6,024	26.5	0.0	
Atrium	Sys Block	7,220	216.8	416,063	567,951	16,379			-369,431	6,024	26.5	0.0	
Broad St lobby	Rm/Zn Tot	4,600	138.1	209,295	260,575	9,053	9.45	0	-169,477	9,053	15.2	0.0	
BROAD ST LOBBY	Sys Tot/Ave	4,600	138.1	209,295	260,575	9,053			-169,477	9,053	15.2	0.0	
BROAD ST LOBBY	Sys Block	4,600	138.1	209,295	260,575	9,053			-169,477	9,053	15.2	0.0	
15 ST LOBBY	Rm/Zn Tot	5,838	83.4	138,248	194,429	5,164	4.25	D	-94,700	5,164	32.3	0.0	
15 ST LOBBY	Sys Tot/Ave	5,838	83.4	138,248	194,429	5,164			-94,700	5,164	32.3	0.0	

** This report does not display heating only systems.

Project Name: 440 N. BOARD STREET Dataset Name: C:\Documents and Settings\la250\Desktop\Energy.TRC TRACEB 700 v4.1 calculated at 03:48 PM on 10/25/2005 Atternative - 1 Load/Airflow Summary report page 2

Jayme Antolik Mechanical Option Philadelphia School District Administration Headquarters

Technical Assignment #3

By ae	
COOLING HEATING	Floor Area
Description Type % 0A ofm/tt* ofm/ton #*/ton 8tu/hr-ft* % 0A ofm/tt* 8tu/hr-ft	t*
FL-1 north Zone 8.82 1.59 549.8 346.6 34.63 0.00 -7.	50,000
FL-1 NORTH System - Parallel Fan-Powered VAV 8.82 1.59 549.8 346.6 34.63 0.00 -4.	4 50,000
FL1 south Zone 9.22 1.52 538.0 354.8 33.82 0.00 -7.	3 48,000
FL-1 SOUTH System - Parallel Fan-Powered VAV 9.22 1.52 538.0 354.8 33.82 0.00 0.	48,000
FL-2 north Zone 9.37 1.49 538.2 359.0 33.42 0.00 -7/	58,000
FL-2 NORTH System - Parallel Fan-Powered VAV 9.37 1.49 536.2 359.0 33.42 0.00 0.	58,000
FL-2 south Zone 9.34 1.50 537.0 358.8 33.45 0.00 7/	7 58,000
FL-2 SOUTH System - Parallel Fan-Powered VAV 9.34 1.50 537.0 358.8 33.45 0.00 0.	58,000
FL-3 north Zone 8.70 1.61 506.2 314.8 38.12 0.00 -19.	9 58,000
FL-3 NORTH System - Parallel Fan-Powered VAV 8.70 1.61 506.2 314.8 38.12 0.00 0.	58,000
FL-3 south Zone 9.08 1.54 535.1 347.5 34.53 0.00 -7.	9 58,000
FL-3 SOUTH System - Parallel Fan-Powered VAV 9.08 1.54 535.1 347.5 34.53 0.00 0.	58,000
FL-4 Zone 8.85 1.58 537.0 339.9 35.30 0.00 7.	0 50,000
FL-4 System - Parallel Fan-Powered VAV 8.85 1.58 537.0 339.9 35.30 0.00 0.	50,000
FL-5 Zone 8.44 1.66 510.8 308.2 38.94 0.00 -19.	38,500
FL-5 Svstem - Parallel Fan-Powered VAV 8.44 1.66 510.8 308.2 38.94 0.00 0.	38,500
tenant-fi1 Zone 9.14 1.53 552.8 361.3 33.22 0.00 -7.	27,500
TENANT FL-1 System - Parallel Fan-Powered VAV 9.14 1.53 552.8 361.3 33.22 0.00 0.	27,500
tenant-#3 Zone 9.09 1.54 506.1 329.0 36.48 0.00 18.	1 28,000
TENANT FL-3 System - Parallel Fan-Powered VAV 9.09 1.54 506.1 329.0 36.48 0.00 0.	28,000
Atrium Zone 26.48 2.27 346.1 152.5 78.66 0.00 0.83 -79.	7,220
Atrium System - Parallel Fan-Powered VAV 26.48 2.27 346.1 152.5 78.66 0.00 0.83 -32.	5 7,220
Broad St lobby Zone 15.24 1.97 416.9 211.8 56.65 0.00 1.97 -36.	4 4,600
BROAD ST LOBBY System - Packaged Terminal Air 15.24 1.97 416.9 211.8 56.85 0.00 1.97 0. Conditioner	4,600
15 ST LOBBY Zone 32.30 0.88 318.7 380.3 33.30 0.00 0.88 -16.	2 5,838
15 ST LOBBY System - Packaged Terminal Air 32.30 0.88 318.7 360.3 33.30 0.00 0.88 0. Conditioner	5,838
15 ST LOBYY HEAT Zone 0.00 0.00 0.0 0.0 0.00 0.00 4.59 -281.	1 200
15STLOBBY HEAT System - Unit Heaters 0.00 0.00 0.0 0.0 0.0 0.00 4.59 -281.	1 200
BROAD ST LOBBY HEAT Zone 0.00 0.00 0.0 0.0 0.00 0.00 2.99 -183.	4 300
BROAD ST LOBBY HEAT System - Unit Heaters 0.00 0.00 0.0 0.0 0.00 0.00 2.99 -183.	4 300

Project Name: 440 N. BOARD STREET Dataset Name: C:\Documents and Settings\la250\Desktop\Energy.TRC TRACEB 700 v4.1 calculated at 03:48 PM on 10/25/2005 Atternative - 1 Page 1 of Engineering Checks Report

SYSTEM SUMMARY DESIGN AIRFLOW QUANTITIES By ae

			MAIN SYSTEM				Auxiliary System	Room
System Description	System Type	Outside Airflow ofm	Cooling Airflow ofm	Heating Airflow ofm	Return Airflow ofm	Exhaust Airflow ofm	Supply Airflow ofm	Exhaust Airflow ofm
FL-1 NORTH	Parallel Fan-Powered VAV	6,993	79,317	0	79,317	6,993	D	D
FL-1 SOUTH	Parallel Fan-Powered VAV	6,713	72,787	0	72,787	6,713	0	D
FL-2 NORTH	Parallel Fan-Powered VAV	8,112	86,613	0	86,613	8,112	0	D
FL-2 SOUTH	Parallel Fan-Powered VAV	8,112	86,812	0	86,812	8,112	0	D
FL-3 NORTH	Parallel Fan-Powered VAV	8,112	93,260	0	93,260	8,112	0	D
FL-3 SOUTH	Parallel Fan-Powered VAV	8,112	89,318	0	89,318	8,112	0	D
FL-4	Parallel Fan-Powered VAV	6,993	78,987	D	78,987	6,993	0	D
FL-5	Parallel Fan-Powered VAV	5,385	63,814	0	63,814	5,385	0	D
TENANT FL-1	Parallel Fan-Powered VAV	3,846	42,081	0	42,081	3,846	0	D
TENANT FL-3	Parallel Fan-Powered VAV	3,916	43,081	0	43,081	3,916	0	0
Atrium	Parallel Fan-Powered VAV	4,336	16,379	6,024	16,379	4,336	0	D
BROAD ST LOBBY	Packaged Terminal Air Conditioner	1,380	9,053	9,053	9,053	1,380	0	D
15 ST LOBBY	Packaged Terminal Air Conditioner	1,668	5,164	5,164	5,164	1,668	0	D
15ST LOBBY HEAT	Unit Heaters	0	0	917	0	25	0	D
BROAD ST LOBBY HEAT	Unit Heaters	0	D	897	D	19	D	0
Totals		73,678	766,665	22,054	766,665	73,722	D	D

Note: Airflows on this report are not additive because they are each taken at the time of their respective peaks. To view the balanced system design airflows, see the appropriate Checksums report (Airflows section).

Project Name: 440 N. BOARD STREET Dataset Name: C:\Documents and Settings\jia260\Desktop\Energy.TRC TRACEB 700 v4.1 calculated at 03:48 PM on 10/25/2005 Atternative - 1 Design Airflow Quantities report page 1