# The Regent

950 N. Glebe Road Arlington, VA



Architect: Cooper Carry Architects

Structural Technical Report 2 Pro-Con Structural Study of Alternate Floor Systems

> Prepared By: Option: Date: Consultant:

Kristin Ruth Structural October 31, 2005 Mr. Schneider

## **Executive Summary**

This report provides an overview of the existing structural system, focusing on the existing typical floor framing system and four other alternative floor framing systems for The Regent, which is currently under construction in Arlington, VA. The Regent is a 12-story office building which has retail space on the first level and a 3-story parking garage below grade.

The four alternative systems considered include: hollow-core planks with steel framing system, precast double tees with precast framing system, cast-in-place, one-way, wide module joists with cast-in-place framing system, and finally, a two-way flat slab with drop panels with cast-in-place framing system. Each alternative floor system design is discussed and their advantages and disadvantages are compared among each other and to the existing floor framing system. A schematic floor framing system plan, showing representative members of the floor framing system is provided with each alternative system discussed. The Appendix includes all of the calculations and design aids used to complete the preliminary structural floor designs as well as existing typical structural floor plans for The Regent. A typical structural floor plan and typical bay plan have been included in the body of this report.

After completing the designs and discussing the advantages and disadvantages for each floor system, it is recommended that the hollow-core planks with steel framing, the precast double tees with precast framing, and the one-way joists with cast-in-place framing systems be studied further.

The existing system has proven to be a very efficient system with many advantages and few disadvantages. Some of the advantages include: relatively small member sizes and self weights, smaller floor system depths, and being able to span the longer spans in the bays. Some disadvantages include: more framing members and likelihood that the long span steel system will cause concrete ponding due to deflection.

The two-way flat slab with drop panels should not be studied further as a two-way CIP system with the existing bay sizes. A 16.5" slab is not practical and not easily constructible. Switching to a two-way post-tensioning system may thin out the slab depth making a post-tensioning system a practical option.

The cast-in-place, one-way, wide module joists have both several advantages and disadvantages. The structure, as preliminarily designed, would weigh a lot more than the existing system and would require larger foundations. Also, the amount of labor that needs to be done on site would require a lot of construction time and field labor, which can be expensive. For a spec office building, construction time is very critical and would be very risky for the involved placement of the cast-in-place concrete joist system. However, this system does provide a uniform depth that does not exceed the existing design's maximum depth. This system also has a good fire rating and can accommodate the longer spans in the larger bay sizes. Considering more columns and

smaller bay sizes may reduce the size of the framing members and the entire structural system may be more efficiently designed as a result.

The hollow-core plank system has several advantages over the existing structure including quicker construction time since the hollow-core planks are precast, the quality control advantage of the planks being precast in a plant, good fire rating, good acoustical value, and less steel beams per bay. Some disadvantages discussed include the labor and cost going into the angle connection to hold the hollow-core planks for a flush floor system, the downtown site being able to accommodate the extra precast deliveries, and the increased beam depths and weights and their effects on the foundations and floor depth.

The precast double tees with precast framing member system is also another possible good alternative. Its advantages over the existing system include: concrete quality control, quick construction time, lighter self weight of the double tees, good fire resistance, and good acoustical value. The disadvantages include heavier beams and columns and the resulting larger foundations, the extra deep depth of the flooring system, and the downtown site being able to accommodate all of the precast deliveries.

All of the alternative systems that have been discussed will be studied further either as a continuation of the preliminary design or a modified design based on what has been learned in from this report.

## **Codes and Code Load Requirements**

The 2000 ICC International Building Code (IBC 2000) was used for the structural design of The Regent. IBC 2000 incorporates many of the design load procedures of ASCE 7-02. ASCE 7-02 was also used for calculating the snow loads and roof live loads. The live loads were taken from Table 1607.1 of IBC 2000. The equations, tables, and procedures used to calculate the design loads listed in this report were taken from ASCE 7-02. LRFD was used for the existing structural design.

Since this report focuses on alternate flooring system designs, only gravity loads were considered in this report. The *Gravity Loads* section summarizes all of the gravity loads considered for the entire building. Furthermore, since the scope of this report includes designing preliminary sizes for representative members for each floor system, worst case typical floor bays were chosen to evaluate each floor system. Since The Regent is primarily an office building, with office space on floors 2-12, the typical bays are found on all of the office use floors. The gravity loads considered for a typical office floor bay are bolded in the *Gravity Loads* section.

## **Gravity Loads**

0

0

0

Dead Loads

| Roof<br>3" - 22 Gage Metal Deck<br>Insulation<br>Misc. DL<br>Roofing                                         | 5 PSF<br>3 PSF<br>10 PSF<br>20 PSF |
|--------------------------------------------------------------------------------------------------------------|------------------------------------|
| Typical Floor                                                                                                |                                    |
| <ul> <li>3 ¼" It. wt. slab on 3" - 20 gage metal deck<br/>(United Steel Deck design manual p. 40)</li> </ul> | 46 PSF                             |
| Concrete Ponding                                                                                             | 10 PSF                             |
| *included because of the long<br>steel spans and cambers                                                     |                                    |
| <ul> <li>Misc. DL</li> </ul>                                                                                 | 15 PSF                             |
| (mechanical ducts, sprinklers,                                                                               |                                    |
| ceiling, plumbing, etc.)                                                                                     |                                    |
| Construction Loads                                                                                           |                                    |
| 3 ¼" It. wt. slab on 3" -20 gage metal deck                                                                  | 46 PSF                             |

Concrete Ponding
 Concrete Ponding
 10 PSF

| • | Live Loads (IBC 2000 and special loadings)                    |         |
|---|---------------------------------------------------------------|---------|
|   | • Corridors                                                   | 100 PSF |
|   | • Stairs                                                      | 100 PSF |
|   | <ul> <li>Mechanical Spaces</li> </ul>                         | 150 PSF |
|   | • Offices                                                     | 100 PSF |
|   | <ul> <li>Retail – 1<sup>st</sup> Level</li> </ul>             | 100 PSF |
|   | <ul> <li>Terrace Above 1<sup>st</sup> Floor Retail</li> </ul> | 100 PSF |
|   | <ul> <li>Loading Dock</li> </ul>                              | 350 PSF |
|   | • Parking Garage (Garages having trucks and busses)           | 50 PSF  |
|   | <ul> <li>Plaza Deck (Fire Truck Loading)</li> </ul>           | 350 PSF |
| • | Snow Load                                                     | 30 PSF  |
| • | Construction Live Loads (unreducible)                         | 20 PSF  |
| • | Roof Live Loads (as calculated per ASCE 7-02)                 | 30 PSF  |

## **Overview of Existing Structural System**

The existing structural system was previously described in *Structural Technical Report 1: Structural Concepts/Structural Existing Conditions Report.* Parts of Technical Report 1 are reproduced in this section in order to put the existing structural system into context.

## Foundations

The foundations for The Regent consist of square footings ranging in size from 4' x 4' to 9' x 9' with depths ranging from 24" to 50" respectively. They are located on a 30' x 30' square grid. The two allowable bearing pressures for the square footings are 25 ksf and 40 ksf. The southwest quarter of the building has allowable bearing pressures of 25 ksf while the other three quarters of the building have a 40 ksf allowable bearing pressure. The larger square footings are located in the central core of the building below the elevator shafts. There are also continuous 24" wide, 12" deep concrete footings under the 12" thick continuous walls. The slab on grade is 4" thick reinforced with 6 x 6, 10/10 WWF. The concrete strength for all foundations, walls, and slabs on grade is a minimum of 3000 psi.

## **Concrete Parking Garage Below Grade**

There is a 3-level concrete parking garage below grade. The typical bay size for the three levels of below grade parking is 30' x 30'. The most common column sizes are 16" x 24" and 28" x 36" and the most common beam sizes are 12" x 24", 12" x 18", 8" x 18", and 18" x 30". All of the columns are of design strength f'c = 5000 psi, although a few are f'c = 7000 psi and the 28-day design strength of the beams is f'c = 4000 psi.

The parking garage slabs are 8" thick with a typical drop panel size of 10' x 10' x 5  $\frac{1}{2}$ " and a 28-day strength of 4000 psi.

## Plaza and 1<sup>st</sup> Floor Slabs

The Plaza level slab is 12" thick with 10' x 10' x 12" drop panels. The design loads for the Plaza level include a 350 PSF live load which accounts for the weight of a fire truck loading during the case of an emergency.

The first floor slab is 9" thick with 10' x 10'x 5  $\frac{1}{2}$ " drop panels. The Plaza and 1<sup>st</sup> floor slabs are both of strength f'c = 4000 psi.

#### **Steel Framing Above Grade**

There are two typical bay sizes for the steel superstructure above grade; 30' x 30' and approximately 43' - 46' x 30'. From North to South the columns are at a 30' spacing. From East to West the columns spacings are approximately 46', 30' and 43' respectively. The most common column sizes are W14 x 145, W14 x 99, and W14 x 176.

The most common beam sizes are W18 x 50, W18 x 46, and W16 x 26 with cambers ranging from  $\frac{3}{4}$ " to 2" which are designed to 75% dead load. The most common girder sizes are W18 x 65, W24 x 55, W24 x 62, and W24 x 55.

The typical floor slab is 3  $\frac{1}{4}$ " light weight concrete with an f'c = 3000 psi and is reinforced with 6 x 6 10/10 WWF on top of a 3" – 20 gage composite steel deck for a total slab thickness of 6  $\frac{1}{4}$ ". The shear studs are  $\frac{3}{4}$ " diameter, 5" headed studs.

The existing typical bay floor construction and member sizes are approximately the same for all office floors 2-12.

There is an elevator core running up the center of the building and through the center of each floor. The elevator core was neglected when exploring alternative structural floor framing systems since the alternative floor system designs are preliminary. The elevator core and its effects on the design of the floor framing will be considered in later reports.

The roof deck construction is 3" x 22 gage, deep rib, type N, painted roof deck. There are a few full moment connections at certain corners of the roof and penthouse roof.

#### Lateral Load Resisting System

The lateral load resisting system for The Regent consists of five braced frames at the core of the building (See the Typical Floor Plan). There are two braced frames, #4 and #5, that span along the building's North / South axis, and three braced frames, #1, #2, and #3, that span along the building's East / West axis. The braced frames are

approximately 30' in width and run the full height of the building from the first floor to the penthouse roof.

Frames #1, #3, and #5 have chevron style bracing and Frames #2 and #4 have single diagonal bracing. The typical diagonal steel members used in the braced frames are HSS 8" x 8"'s, 10" x 10"'s, and 12" x 12"'s with thicknesses ranging from 3/8" to 5/8". The braced frame columns are all 14" wide flange members ranging in size from W14 x 233's and W14 x 257's near the base to W14 x 53's to W14 x 72's at the top.

## Scope

The scope of this report focuses on alternative typical floor framing systems for the office tower floors. Alternate flooring and framing systems for The Regent's below-grade parking structure may be considered in later reports.

## **Typical Existing Floor System Design**

Levels 2-12 are intended to be used as rentable office space. The loads considered for the existing floor system design were listed in detail in the *Gravity Loads* section of this report and are summarized below.

Loads:

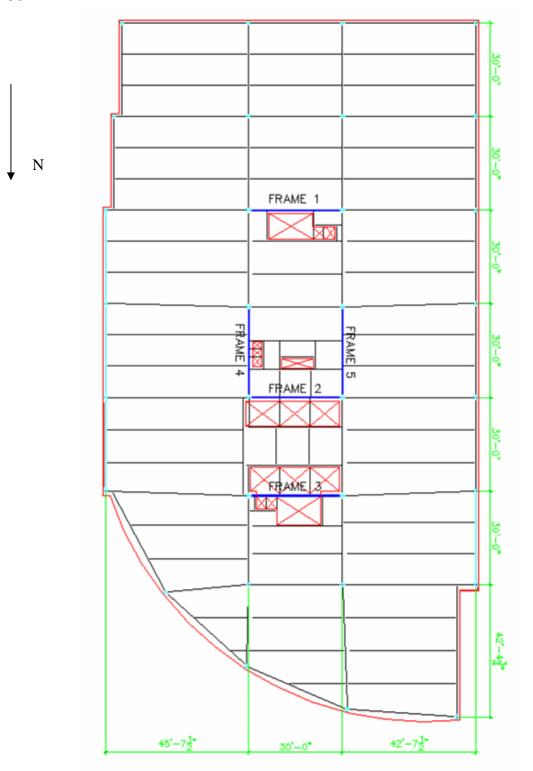
| Dead: |                                                                  |                     |
|-------|------------------------------------------------------------------|---------------------|
|       | 3 ¼" It. wt. slab on 3" - 20 gage metal deck<br>Concrete Ponding | 46 PSF<br>10 PSF    |
|       | Misc. DL                                                         | 15 PSF              |
|       | Façade                                                           | 15 PSF              |
|       | Construction DL                                                  | 56 PSF              |
| Live: |                                                                  |                     |
|       | Office                                                           | 100 PSF (reducible) |
|       | Construction LL                                                  | 20 PSF              |

The existing typical office floor system design consists of a concrete slab on metal deck supported by composite steel beams. The slab is 3  $\frac{1}{4}$ " light weight concrete with an f'c = 3000 psi and is reinforced with 6 x 6 10/10 WWF. The metal deck is 3" – 20 gage composite steel deck for total slab thickness to 6  $\frac{1}{4}$ ". The composite action between the slab on metal deck and the steel beams is provided by  $\frac{3}{4}$ " diameter, 5" headed shear studs.

There are three typical bay sizes for the steel superstructure above grade; 30' x 30', approximately 46' x 30', and approximately 43' x 30'. From North to South the columns

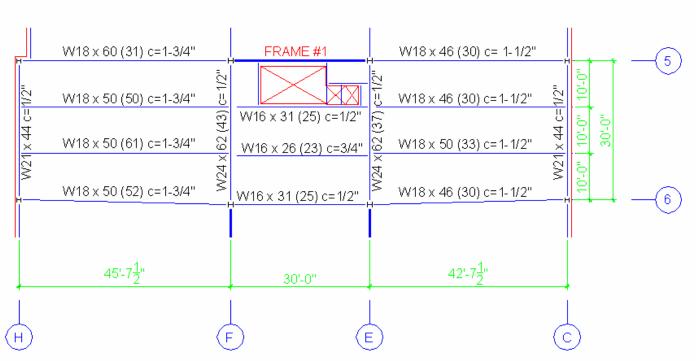
are at a 30' spacing. From East to West the columns spacings are approximately 46', 30' and 43' respectively.

All of the columns are W14's.


The most common composite beam sizes for the beams spanning in the long direction are W18 x 50 for the 46' x 30' bays, W18 x 46 for the 43' x 30' bays, and W16 x 26 for the 30' x 30' bays with cambers ranging from  $\frac{3}{4}$ " to 2", which are designed to 75% dead load. The most common girder sizes are W18 x 65, W24 x 55, W24 x 62, W24 x 55 and W21 x 44 around the perimeter.

The existing framing members were checked using a simplified RAM model. Some of the members were exactly the same, and some of the RAM-designed members were smaller than the existing members. The results of the RAM analysis can be found in the Appendix of this report. The number of shear studs and camber sizes varied slightly from the existing design. There are several reasons as to why some of the members did not exactly match the existing design. These reasons are summarized below.

- Only gravity loads were considered for this report. Although there are braced frames designed to primarily take the lateral loads, the existing members may be larger as a result of the lateral effects on the floor framing members.
- In the RAM analysis, the typical bay sizes were rounded up to the nearest foot. This should not have had a significant effect on the size of the beams, though. Also, slight column offsets were neglected.
- Openings in the floor system were neglected in the RAM analysis and may have had an impact on the existing member sizes. If higher loadings were anticipated in an area, they were considered for the existing system, but only a uniformed distributed office live and dead loading were considered in the RAM analysis.

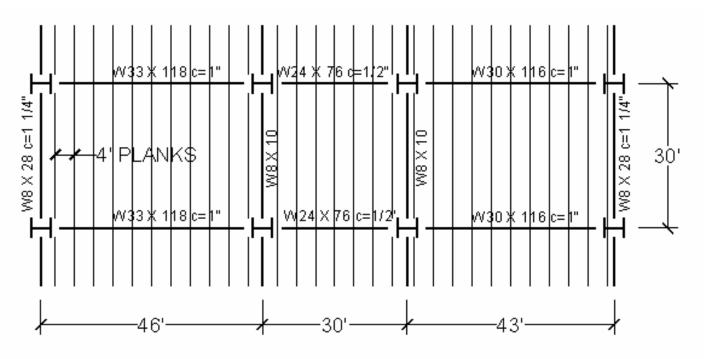

In conclusion, the existing member sizes were the same or slightly larger than the RAM analysis results. Therefore, the applied loads considered are proven to be correct or very close in value to the loads considered for the design of the existing system.

## Typical Floor Plan



Floor plans for levels 2-12 have been included in the Appendix of this report.

## Typical Bay for the Existing Design of the Office Floors




NOTE: ALL COLUMNS ARE W14's

Alternate Floor System Designs

## Hollow-Core Planks with Steel Framing System

Typical Floor Framing Plan for Hollow-Core Planks with Steel Framing



#### ALL COLUMNS W14's MIN.

Hollow-core plank design: PCI Designation 4LHC8+2 Width = 4' Depth = 8" + 2" normal weight topping = 10" f'c = 5,000 psi f'ci = 3,500 psi Allowable safe superimposed service load = 125 PSF

# Please refer to PCI Design Handbook page 2-27, which can be found in the Appendix, for the hollow-core member cross-section, dimensions, and properties.

## **System Description**

This alternate flooring system consists of steel framing with precast hollow-core planks. The planks are designed in the North / South direction across the 30' typical bays. The column placement and bay sizes are the same as the existing floor system.

## System Design

Please refer to the Appendix for detailed calculations, design assumptions, and design aids.

For the initial design of the precast hollow-core planks, the PCI Design Handbook, 5<sup>th</sup> edition was used. The hollow-core plank selected is able to span the 30' tributary width and carry a safe superimposed load of 125 PSF which exceeds the calculated safe superimposed loading of 115 PSF. The 100 PSF office live load was not able to be reduced since the tributary area for each plank was less than 400 SF. A 2" normal weight topped member was selected in order to help provide extra stability to the flooring system. Several hollow-core plank members of different depths and self weights were considered and the lightest member was selected.

The hollow-core plank selected is 4' wide x 10" deep and has a self weight of 68 PSF.

The steel framing members were designed using RAM to carry the weight of the hollowcore planks instead of the slab on deck as well as the other original superimposed dead loads and live loads.

In order to keep the depth of the flooring system as small as possible, it is proposed that the hollow-core planks sit on angles welded to the web of the supporting steel members so that the top of the flange and the top of the hollow-core plank are flush. This will decrease the total depth at the supporting beams from 43" to 33".

## Comparison to the Existing System

#### Depth

The 10" depth of the hollow-core slab exceeds the depth of the existing slab on metal deck which is only 6.25". The deepest steel member of this system is approximately 33" deep, whereas in the existing system the deepest member is only 24" deep. Although it is proposed that the planks be flush with the top of the beams, this system will still be 33" deep at the supporting members as compared to the existing system which has a maximum depth of 30.25".

#### Member Sizes

The steel framing members that span East / West are significantly deeper and heavier than the existing design. The increase in size is due to the loss of composite action between the slab and the composite beams and also because the self weight of the hollow-core slabs exceeds the self weight of the slab on deck, including ponding, by 12 PSF. Since the weight of the flooring system has increased, the columns will need to be larger. The existing system uses W14 members.

#### Impact on the Existing Foundations

Since the steel framing includes heavier members, and since the weight of the hollowcore planks exceeds the weight of the slab on metal deck, the weight of the superstructure is going to increase, resulting in larger foundations. This system is still relatively light compared to the concrete framing options though.

## Advantages

#### Time

The most significant advantage is the elimination of cast-in-place concrete. Hollow-core planks are quicker to erect since they are precast, eliminating pouring and curing time and on-site cast-in-place labor. In combination with the time-savings of steel erection over a concrete system, this system has the potential to be one of the quickest systems to erect.

#### Depth

Although the depth of the flooring system at the supporting beams is approximately 33", the depth of the planks is only 10" deep spanning the entire bay with no interior bay beams as in the case of the existing system. Therefore, the depth of the hollow-core plank flooring system is relatively shallow throughout the entire bay.

#### Less Beams

This system allows for the elimination of the beams not directly connecting to the columns. These infill beams are needed in the existing system to participate in the composite action of the flooring system. Since the planks are able to span 30', these extra beams are not needed in this floor system design, reducing the amount of steel needed to be erected and the reduction material and labor costs associated with it. Adding intermediate beams may allow for the reduction in size of the proposed beams and hollow-core planks, and the most efficient solution will need to be designed.

#### Quality Control

The hollow-core planks are precast in a concrete plant, so there is quality control in the manufacturing of the hollow-core planks over a cast-in-place slab on metal deck system which is constructed on site.

#### Fire-Rating

Precast systems typically have good fire ratings.

#### Acoustics

Precast members have good acoustical value. The precast members can help resist noise penetration through the floors, which may be advantageous in an office building.

#### Weight

Although, this system does not require the additional beams every 10', the weight of some of the supporting members have significantly increased, while some have

decreased. Also, the weight of the hollow-core planks is greater than the weight of the slab on deck. The weight of this system could be potentially heavier than the existing system and could result in larger foundations. Although, there is an increase in weight of some of the members and in the additional weight of the hollow-core planks, the overall weight of the structure compared to the weight of a concrete systems is still relatively light.

## Disadvantages

## Detailing

In order to make this system a good alternative in relation to overall depth, the hollowcore planks need to be flush with the top of the flanges of the steel in order to decrease the depth. In order to do this, steel angles need to be connected to the webs of all the supporting members adding both material and labor costs. If the planks were not to be carried by the angles and were selected to span on top of the supporting flanges, then the depth of the flooring system would be a total of 43" at the supporting members.

#### Deliveries

Since this building would be all pre-fabricated members, they would all just need to be delivered to site and immediately erected. Since The Regent is on a downtown site, frequent deliveries and staging room could be an issue.

#### Cost

The material cost of the hollow-core planks may be higher than the cast-in-place slab on metal deck. Also, the precast planks would need to be installed with a crane and may require additional crane costs. There would be additional costs to detail and construct the supporting angle connections.

#### **Other Considerations**

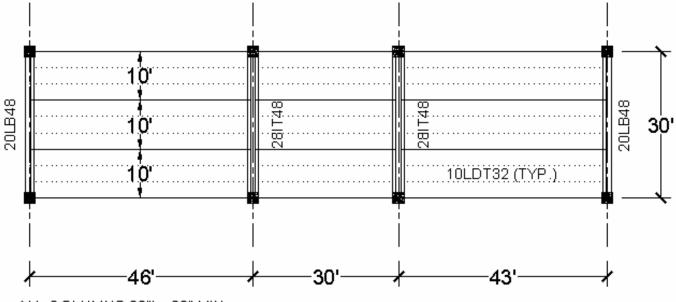
#### Composite Action – Smaller Framing Members

One alternative to making this system more efficient is to make the hollow-core planks composite with the steel beams through shear studs welded to the steel and grouted into pre-drilled holes in the hollow-core planks. Making the hollow-core planks composite with the steel beams would result in smaller supporting steel beams.

#### Pre-Connected Angles

The steel angles could be pre-attached to the web prior to coming onsite eliminating the need for field connection the angles.

## Infill Beams


Instead of spanning the planks 30', a beam could be added at 15' reducing the span of the hollow-core planks. This would reduce the size of the planks needed, resulting in a smaller plank depth and self-weight and thus reducing the size of the supporting members. More steel framing members would need to be erected as a result.

#### Lateral Load Resisting System

The lateral load resisting braced frame system can remain, although the braced frame member sizes may need to be increased to handle the heavier dead loads.

## **Precast Double Tees with Precast Framing System**

Typical Floor Framing Plan for Precast Double Tees with Precast Framing System



ALL COLUMNS 28" X 28" MIN.

#### Double Tee Selection: 10LDT32 120 PSF < 130 PSF ∴ OK

12 strands, 8/16" = 0.5" diameter strands 1 depression point f'c = 5,000 psi f<sub>pu</sub> = 270,000 psi 2.4" estimated camber at erection 2.9" estimated long-time camber

#### Inverted Tee-Beam Selection: 28IT48

22 strands, 8/16" = 0.5" diameter strands low-lax strands f'c = 5,000 psi f<sub>pu</sub> = 270,000 psi 0.4" estimated camber at erection 0.1" estimated long-time camber

#### L-Beam Selection: 20LB48

21 strands, 8/16'' = 0.5'' diameter strands low-lax strands f'c = 5,000 psi f<sub>pu</sub> = 270,000 psi 0.5'' estimated camber at erection 0.2'' estimated long-time camber

## 4,560 PLF < 9,741 PLF ∴ OK

2,760 PLF < 9,231 PLF ∴ OK

Please refer to PCI Handbook, pages 2-42, 2-44, and 2-16, which can be found in the Appendix, for the member cross-sections, dimensions, properties, and prestressing strand details.

## **System Description**

This flooring system consists of entirely of precast members. The floor system consists of precast double tees spanning 46', 30' and 43' in the East / West direction. They are supported by interior precast inverted tee-beams and exterior precast L-beams which span 30' in the North / South direction. The bay sizes are the same as the existing system.

## System Design

Please refer to the Appendix for detailed calculations and design assumptions.

The precast members were oriented as described previously so that the supporting girders would not have to span the 46' and would result in smaller members throughout the floor framing structure. The live load was able to be reduced slightly since the tributary area of each double tee member exceeded 400 SF.

For the preliminary design of the precast members, the PCI Design Handbook 5<sup>th</sup> edition was used. A 10' wide member was selected so that exactly 3 of them would fit inside of the 30' bay. The worst case span for the double tee was 46' and it needed to carry a safe superimposed service load of 120 PSF to account for a <sup>3</sup>/<sub>4</sub>" normal weight topping added on top of the double tees and their supporting members for stability. Several double tee sections were considered, but the lightest section, with a PCI designation of 10LDT32, was selected and is able to carry 130 PSF. It has an overall depth of 32", prior to adding the <sup>3</sup>/<sub>4</sub>" topping for stability and a self weight of 49 PSF.

An interior precast inverted tee-beam was selected to carry the double tee members on both sides and an L-beam was selected to carry the double tees on one side at the exterior.

## Comparison to the Existing System

## Depth

The depth of the double tees will be approximately 33" throughout the bay and 49" at the supporting members. These depths exceed the depths of the existing system, significantly at both the supporting members (49" vs. 30.25") and throughout the bay (33" vs. 6.25").

#### **Member Sizes**

The self weight of the double tees is approximately the same as the existing system. The double tee self weight is 49 PSF as compared to the existing system which is 46 PSF not including the 10 PSF used to account for concrete ponding during placement. Because this system is all precast, the precast members are significantly larger in depth, width, and mass than the steel framing members. The self weights of the supporting members are significantly larger than the existing steel framing. The precast columns would have to be at least 28" square in order to support the 28" width of the precast beams.

#### Impact on the Existing Foundations

Since this system is all precast, the weight of the structure will increase significantly requiring larger foundations.

#### **Advantages**

#### Erection Time

Erection time will be very quick since the members will arrive on site ready to be placed.

#### Quality Control

Since the precast members are formed and cured in a plant, the precast members have better quality control over cast-in-place members.

#### Fire-Rating

Precast members typically have good fire ratings

#### Acoustics

Precast members have good acoustical value. They can more easily resist noise penetration through the members, which may be advantageous in an office building.

#### Disadvantages

#### Depth

The depths of this system significantly exceed the depths of the existing system both at the supports and spanning throughout the bay. Since The Regent is built to it maximum height, minimum floor structure depth is critical.

#### Site Congestion

The Regent is located in downtown Arlington, VA, so the site is rather limiting. It may be difficult to coordinate cranes and precast deliveries on a small downtown site.

#### Material Costs

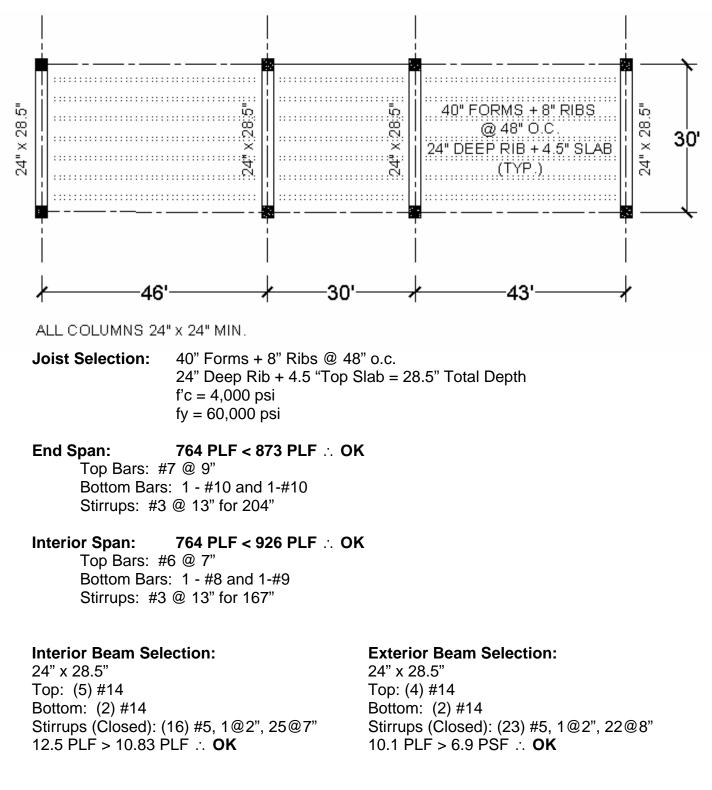
Although, this system will have lower construction costs, the cost of an all precast system can get very expensive especially for larger members such as those required in this initial design.

#### **Other Considerations**

#### Shallower Members

Shallower members could be selected to carry the loads. The tops of the beams will need to be filled-in in order to make the tops of the beams flush with the top of the double tees. Although the supporting members can be smaller, they will still be deeper than just the double tees because of the depth of concrete needed to support the double tees. So although, lighter shallower members could carry the loads, detailing of the supporting beams and their depths need to be considered.

#### Smaller Spans


The overall depth and size of the framing members would be reduced if smaller bay sizes were introduced. Smaller bay sizes would require more columns which may be undesirable for an upscale spec office building where an open floor plan is the most profitable and optimum design.

#### Lateral Load Resisting System

The lateral load resisting system will need to be changed to a concrete system and sized to handle the increased dead load of the building.

# One-way Wide Module Joists, Multiple Spans, with Cast-In-Place Framing System

Typical Floor Framing Plan for One-way Wide Module Joists with Cast-In-Place Framing System



Please refer to CRSI, pages 8-67, 12-93, and 12-107, which can be found in the Appendix, for dimensions, reinforcing details, and properties of members.

## **System Description**

This system consists of cast-in-place, one-way wide module joists spanning 46', 30', and 43' in the East / West direction. The joists span into cast-in-place beams that span 30' along the North / South direction. The column grid of the existing system was used in this design.

## System Design

Please refer to the Appendix for detailed calculations and design assumptions.

The 2002 CRSI Design Handbook was used to size the one-way, wide module joists and their supporting interior and exterior beams. The joists and beams are oriented this way so that the beams would not have to span 46' thus minimizing the beam member sizes. A 4.5" slab is the minimum for having a fire resistance rating for the floor assembly.

Several joist sizes were considered, but the one selected was chosen because it had the lightest self-weight. All of the joists that were able to span 46' had a rib depth of 24" and a slab depth of 4.5". The beams were also designed using the 2002 CRSI Handbook and the beams were selected to span 30' and to have a depth of 28.5" equal to that of the joists.

## Comparison to the Existing System

## Depth

The maximum depth of the one-way wide module joist system and the beams is 28.5". This depth at the beam supports is shallower than the slab on deck composite beam system which has an overall depth of 30.25" at the beams. Spanning throughout the bay, the wide module joists have a 4.5" depth, whereas the composite beam system has a 6.25" depth.

#### **Member Sizes**

The cast-in-place concrete beams are deeper and wider and have more mass over the existing steel framing system. The columns sizes would have to be approximately 24" square or wider in order to support the 24" wide beams.

## Impact on the Existing Foundations

The cast-in-place framing system will weigh significantly more than the existing steel framing system. The concrete beams used are very large and will weigh a lot more

than the steel framing. The wide module joists have a self weight of 119 PSF which is significantly more than the 56 PSF accounting for the slab on deck and concrete ponding of the existing design. The foundations will need to be sized larger in order to accommodate for the significant increase in weight of the structure.

#### Advantages

#### Depth

In considering the overall depth of the floor system at the supporting beams, this system is slightly shallower than the existing system. The 4.5" slab is also less than the 6.25" slab on deck.

#### Fire Resistance

The 4.5" slab depth ensures a fire resistance rating.

#### Resistance of Lateral Loads

This one-way wide module joist system is a very sizable and rigid floor framing system and would probably help resist the lateral loads.

#### Disadvantages

#### Construction

The one-way wide module joists will require lots of construction time to form, pour and cure. It may also require a significant shoring system which is not currently needed in the existing design.

#### Weight

Being an all cast-in-place concrete system, the weight of the structure will significantly increase, requiring larger foundations.

#### Site Limitations

Since this an all cast-in-place concrete system, a concrete batch plant may be necessary on site. The Regent's downtown site may not be able to accommodate a batch plant if one is necessary for this system.

#### Labor

This system will involve a large construction labor force in order to form and pour all of the cast-in-place concrete.

#### Column Size

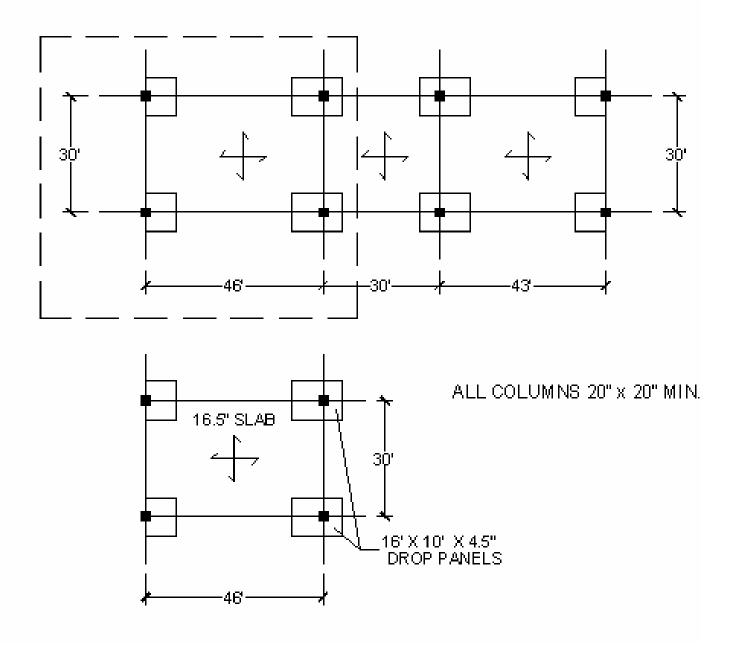
The larger mass columns may be undesirable in an open floor plan office building.

#### Cost

The construction and material costs would be significant with this system. There is a lot of concrete material that needs to be formed, poured, and cured for a large office building. The labor costs would be very high.

#### **Other Considerations**

#### Lateral Load Resisting System


The lateral load resisting system will need to be changed to a concrete system and sized to handle the increased dead load of the building.

#### Smaller Spans

The overall depth and size of the framing members would be reduced if smaller bay sizes were introduced. Smaller bay sizes would require more columns which may be undesirable for an upscale spec office building where and open floor plan is the most efficient and optimum design.

# Two-way Flat Slab with Drop Panels with Cast-In-Place Framing System

Typical Floor Framing Plan for Two-way Flat Slab with Drop Panels with Cast-In-Place Framing System



## **System Description**

This floor system is a two-way, cast-in-place flat slab system with drop panels and castin-place framing members designed with the existing system's column grid.

#### System Design

Please refer to the Appendix for detailed calculations and design assumptions.

The layout and loading of this structure met ACI 318-02 requirements for the use of the Direct Design Method to design this two-way slab. The Direct Design Method was used to design the slab and the drop panels in both the long and the short span directions. 20" x 20" columns were assumed for the initial calculations. In actuality, the columns would need to be significantly larger. The minimum slab thickness for this slab and these spans, according to ACI Table 9.5(c), is 16.5" and 21" at the drop panels. Since the depth of the slab is greater than 12", it is not practical or constuctible.

#### Comparison to the Existing System

#### Depth

The maximum depth of this system is 21" at the drop panels and is 16.5" throughout the span of the bay. The maximum depth of the existing system, 30.25" is greater than the maximum depth of this system.

#### **Member Sizes**

This system was designed without any interior or exterior beams. The columns will need to be very large in order to handle the very heavy and deep two-way slab.

#### Impact on the Existing Foundations

This system would be extremely heavy and the foundations would definitely need to be larger.

#### Advantages

#### Fire Rating

A 16.5" slab would have a good fire rating.

## Disadvantages

#### Depth

The overall depth of this system, 16", is desirable compared to some of the deeper systems, but it is not practical since the entire depth is solid concrete.

#### Constructibility

A 16.5" and 21" solid slab are not practical and are not constructible for the existing bay sizes.

#### Weight

The weight of a structure with a solid slab 16.5" deep would be very heavy and would impact the foundations greatly.

#### Cost

The cost of this system would be extremely expensive. Material costs, labor costs, shoring cost, forming costs, and rebar costs.

#### **Other Considerations**

#### Two-Way Post-tensioning

Since a two-way cast-in-place concrete system with drop panels is not practical or constructible with the existing bay sizes, post-tensioning may be a consideration in order to be able to use a thinner, more practical slab thickness.

#### Smaller Bay Sizes

Smaller bay sizes would reduce the size of the slab and the columns, but would require more columns. More columns may be undesirable in an upscale spec office building.

## System Comparison Chart

| System                                                                                         | Pros                                                                                                                                                                                                                                                                                                        | Cons                                                                                                                                                                                                                                                                                           | Considerations                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Existing Composite<br>Slab on Metal Deck<br>with Composite<br>Steel Beams and<br>Steel Framing | <ul> <li>Lighter structure</li> <li>Quick construction</li> <li>Smaller foundations</li> <li>Relatively small depths</li> <li>Smaller columns sizes</li> <li>Can efficiently accommodate longer spans</li> </ul>                                                                                            | <ul> <li>Concrete ponding over<br/>the long spans</li> <li>Lots of beams</li> </ul>                                                                                                                                                                                                            | <ul> <li>None at this point</li> </ul>                                                                                                                                                                                                                                             |
| Precast Hollow-<br>Core Planks / Steel<br>Framing                                              | <ul> <li>Quick construction</li> <li>Relatively smaller<br/>foundations</li> <li>Lighter structure</li> <li>Smaller column sizes</li> <li>Quality control</li> <li>Relatively small depths</li> <li>Less steel beams needed<br/>per bay</li> <li>Good fire rating</li> <li>Good acoustical value</li> </ul> | <ul> <li>Lots of deliveries to a downtown site</li> <li>Angle detailing to support the planks</li> <li>Deeper, heavier steel members</li> <li>Material costs</li> </ul>                                                                                                                        | <ul> <li>Composite action<br/>between the steel<br/>beams and the hollow-<br/>core planks</li> <li>Prefabrication of<br/>angles to the webs</li> <li>Adding infill beams to<br/>get smaller beam and<br/>plank sizes</li> <li>Untopped planks for a<br/>lighter section</li> </ul> |
| Precast Double<br>Tees / Precast<br>Framing                                                    | <ul> <li>Quick construction</li> <li>Quality control</li> <li>Good fire resistance</li> <li>Can accommodate longer<br/>spans</li> <li>Less labor intensive</li> <li>Less labor costs</li> <li>Good acoustical value</li> <li>Double tee self weight<br/>comparable to slab on deck<br/>weight</li> </ul>    | <ul> <li>Larger foundations</li> <li>Deep flooring system</li> <li>Heavy beams and columns</li> <li>Lots of deliveries to a downtown site</li> <li>Material costs</li> </ul>                                                                                                                   | <ul> <li>Smaller bay sizes</li> <li>Shallower supporting members (not flush)</li> </ul>                                                                                                                                                                                            |
| CIP One-way Wide<br>Module Joists / CIP<br>Framing                                             | <ul> <li>Uniform depth</li> <li>Rigid floor system</li> <li>Slab and supporting beam depths are less than existing depths</li> <li>Can accommodate longer spans</li> <li>Good fire rating</li> </ul>                                                                                                        | <ul> <li>Larger foundations</li> <li>Heavy structure</li> <li>Labor intensive</li> <li>Longer construction time</li> <li>More field labor<br/>intensive</li> <li>Larger column sizes</li> <li>Forming and shoring<br/>system required</li> <li>Labor costs</li> </ul>                          | <ul> <li>Smaller bay sizes,<br/>more columns</li> </ul>                                                                                                                                                                                                                            |
| CIP Two-way Flat<br>Slab with Drop<br>Panels / CIP<br>Framing                                  | Good fire resistance                                                                                                                                                                                                                                                                                        | <ul> <li>Not practical from a constructability, cost, labor, standpoint for the existing bay sizes</li> <li>Very heavy structure</li> <li>Larger foundations</li> <li>Larger column sizes</li> <li>Extensive forming and shoring systems required</li> <li>Material and labor costs</li> </ul> | <ul> <li>Two-way post-<br/>tensioning</li> <li>Smaller bay sizes,<br/>more columns</li> </ul>                                                                                                                                                                                      |

## **Final Summary and Recommendations**

After completing the designs and discussing the advantages and disadvantages for each floor system, it is recommended that the hollow-core planks with steel framing, the precast double tees with precast framing, and the one-way joists with cast-in-place framing systems be studied further.

The existing system has proven to be a very efficient system with many advantages and few disadvantages. Some of the advantages include: relatively small member sizes and self weights, smaller floor system depths, and being able to span the longer spans in the bays. Some disadvantages include: more framing members and likelihood that the long span steel system will cause concrete ponding due to deflection.

The two-way flat slab with drop panels should not be studied further as a two-way CIP system with the existing bay sizes. A 16.5" slab is not practical and not easily constructible. Switching to a two-way post-tensioning system may thin out the slab depth making a post-tensioning system a practical option.

The cast-in-place, one-way, wide module joists have both several advantages and disadvantages. The structure, as preliminarily designed, would weigh a lot more than the existing system and would require larger foundations. Also, the amount of labor that needs to be done on site would require a lot of construction time and field labor, which can be expensive. For a spec office building, construction time is very critical and would be very risky for the involved placement of the cast-in-place concrete joist system. However, this system does provide a uniform depth that does not exceed the existing design's maximum depth. This system also has a good fire rating and can accommodate the longer spans in the larger bay sizes. Considering more columns and smaller bay sizes may reduce the size of the framing members and the entire structural system may be more efficiently designed as a result.

The hollow-core plank system has several advantages over the existing structure including quicker construction time since the hollow-core planks are precast, the quality control advantage of the planks being precast in a plant, good fire rating, good acoustical value, and less steel beams per bay. Some disadvantages discussed include the labor and cost going into the angle connection to hold the hollow-core planks for a flush floor system, the downtown site being able to accommodate the extra precast deliveries, and the increased beam depths and weights and their effects on the foundations and floor depth.

The precast double tees with precast framing member system is also another possible good alternative. Its advantages over the existing system include: concrete quality control, quick construction time, lighter self weight of the double tees, good fire resistance, and good acoustical value. The disadvantages include heavier beams and columns and the resulting larger foundations, the extra deep depth of the flooring system, and the downtown site being able to accommodate all of the precast deliveries.

All of the alternative systems that have been discussed will be studied further either as a continuation of the preliminary design or a modified design based on what has been learned in from this report.

Appendix

**Existing Structural System Check** 

## **Existing Structural Floor System Check**

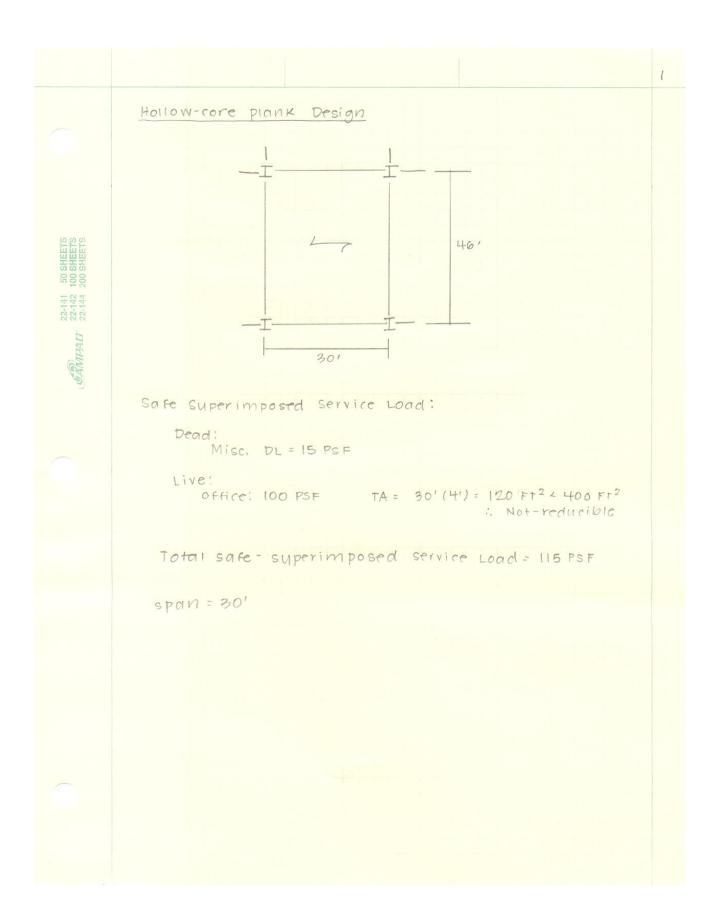
Loads:

| Dead  | :<br>3 ¼" It. wt. slab on 3" - 20 gage metal deck<br>Concrete Ponding<br>Misc. DL | 46 PSF<br>10 PSF<br>15 PSF |
|-------|-----------------------------------------------------------------------------------|----------------------------|
|       | Façade                                                                            | 15 PSF                     |
|       | Construction DL                                                                   | 56 PSF                     |
| Live: | Office                                                                            | 100 PSF (reducible)        |
|       | Construction LL                                                                   | 20 PSF                     |

Typical Floor Framing of Existing – RAM Output Member Sizes, Number of Shear Studs, and Cambers

| (11) M      | W18x40 (68) c=2-1/2" | > (0) (16)(26)(20) (-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > (E) 14/19/25 (CO) 4  | (20) <                                                                     |
|-------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------|
|             | VV10X40 (00) C=2-1/2 | W16x26 (20) c=3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | ;= <u>2-1/4</u>                                                            |
| c=3/4" (11) | W18x40 (68) c=2-1/2" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4" - W18x35 (60) c     | :=2-1/4" =                                                                 |
| W21x44 c=   | W18x40 (68) c=2-1/2" | <sup>6</sup><br><sup>8</sup><br><sup>8</sup><br><sup>7</sup><br><sup>7</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>8</sup><br><sup>7</sup><br><sup>8</sup><br><sup>8</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup> | 4" 12<br>W18x35 (60) c | (2) (2) (2) (2) (2) (2) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5 |
|             | W18x40 (68) c=2-1/2" | ଞ୍ଚି<br>W16x26 (20) c=3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (31)                   | (20)                                                                       |
| -           |                      | Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>.</del>           | (0                                                                         |

## Typical Floor Framing Plan of Existing Composite Steel and Concrete Deck – RAM Output Unfactored Reactions


| C_39k  | 35k | W18x40 | 35€<br>35€  | 24k | W16x26 | 24°2          | 33k   | W18x35 | 33r    |
|--------|-----|--------|-------------|-----|--------|---------------|-------|--------|--------|
| 39k    | 9   |        | 53k         |     |        | 51k           |       |        | 37k -  |
|        | 35k | W18x40 | 35k         | 24k | W16x26 | 24k           | 33k   | W18x35 | 33k    |
| W21x44 |     |        | چ<br>W21x48 |     |        | 748<br>W21x48 |       |        | W18x40 |
| M      | 35k | W18x40 | 3£,≷        | 24k | W16x26 | 24.\$         | 33k   | W18x35 | 33.≷   |
| of.39k | 35k | W18x40 |             | 24k | W16x26 | 24rs          | , 33k | W18x35 | 33K    |
| 39k    | 7   |        | 53k         | 1.  |        | 51k           | 1     |        | 37k    |

Typical Frame (Existing)

NOTE: ALL COLUMNS ARE W14's

| W18 x 60 (31) c=1-3/4"                                                         | FRAME #1             | W18 x 46 (30) c= 1-1/2"                                                                          |        |
|--------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------|--------|
| [다<br>[다]<br>[다] W18 x 50 (50) c=1-3/4" 빙                                      |                      | 5 W18 x 46 (30) c=1-1/2"                                                                         |        |
| 44 c=                                                                          | W16 x 31 (25) c=1/2" | 5<br>5<br>5<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8 | 30'-0" |
| × W18 × 50 (61) c=1-3/4" 3<br>W18 × 50 (52) c=1-3/4"<br>W18 × 50 (52) c=1-3/4" | W16 x 31 (25) c=1/2" | 0                                                                                                |        |
|                                                                                |                      |                                                                                                  |        |
| 45'-7 <u>1</u> "                                                               | 30'-0"               | 42'-7 <u>1</u> "                                                                                 |        |
| $\perp$                                                                        | Ļ                    |                                                                                                  | Ļ      |

Hollow-Core Planks with Steel Framing System



# **Hollow-Core Precast Plank Calculations and Selection**

Service Loads:

Dead

Misc. DL – 15 PSF

Live

Office Space - 100 PSF

Total Safe Superimposed Service Load = 115 PSF

Maximum Span: 30 ft

| PCI<br>Designation | Width<br>(ft) | Depth<br>(in) | 2"<br>Normal<br>Weight<br>Topping | Total<br>Depth<br>(in) | LW vs.<br>Normal<br>Weight | Safe<br>Superimposed<br>Service Load<br>(PSF) | Strand<br>Designation<br>Code | Self<br>Weight<br>(PSF) |
|--------------------|---------------|---------------|-----------------------------------|------------------------|----------------------------|-----------------------------------------------|-------------------------------|-------------------------|
| 4LHC8+2            | 4             | 8             | YES                               | 10                     | LW                         | 125                                           | 68-S                          | 68*                     |
| 4HC8+2             | 4             | 8             | YES                               | 10                     | NW                         | 138                                           | 78-S                          | 81                      |
| 4HC10+2            | 4             | 10            | YES                               | 12                     | NW                         | 128                                           | 58-S                          | 93                      |
| 4LHC12+2           | 4             | 12            | YES                               | 14                     | LW                         | 160                                           | 58-S                          | 93                      |
| 4HC12+2            | 4             | 12            | YES                               | 14                     | NW                         | 124                                           | 76-S                          | 77                      |

Information Taken From PCI Design Handbook, 5<sup>th</sup> edition.

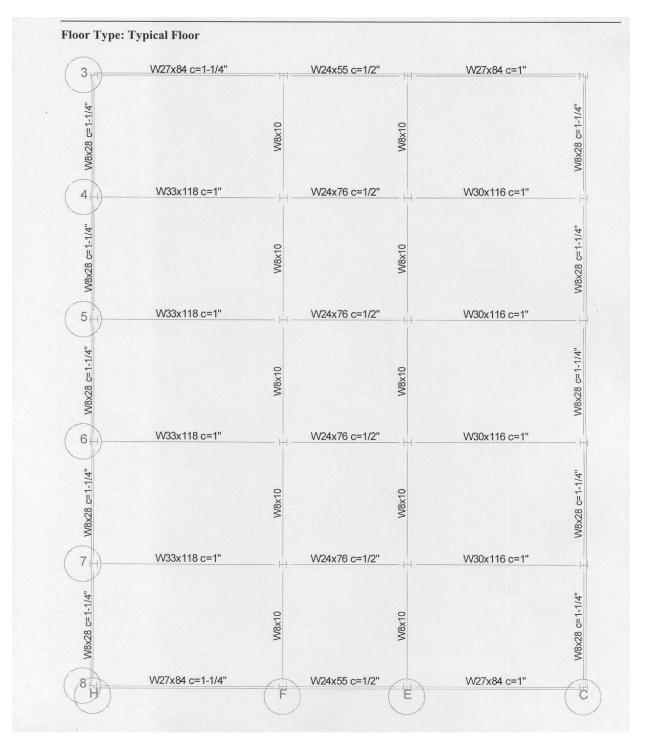
\*denotes lightest design

Selection: 4LHC8+2

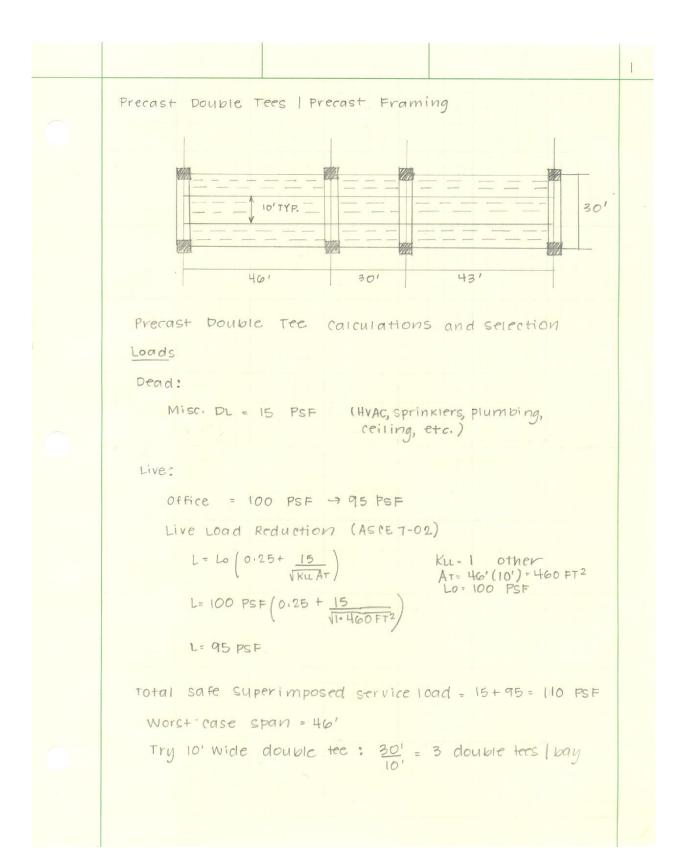
125 PSF > 115 PSF ∴ OK

Try 4'-0" x 8" lightweight, hollow-core planks with 2" normal weight topping Self Weight = 68 PSF > 46 PSF + 10 PSF = 56 PSF

| Strand Patter                                              |            |                          |                           |                                 |                                                             |                                               |                                                      | ſ                                             | 10                                            |                                               | WC                                     |                                        |                                        | E                                      |                                 |                          |                          |                          |                          |                              | tion              |                 |
|------------------------------------------------------------|------------|--------------------------|---------------------------|---------------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------|-------------------|-----------------|
| 76–S                                                       |            |                          |                           |                                 |                                                             |                                               |                                                      |                                               | inh                                           |                                               | 0")                                    |                                        |                                        | **                                     |                                 |                          |                          |                          |                          | Unt                          | toppe             | ed              |
|                                                            | straig     | ht                       |                           |                                 |                                                             |                                               |                                                      |                                               | _ign                                          | twei                                          | ght                                    | Cor                                    | icre                                   | te                                     |                                 |                          |                          | Α                        | =                        |                              |                   | in²             |
|                                                            | neter      |                          |                           | in 16                           | Sths                                                        |                                               |                                                      |                                               |                                               |                                               |                                        |                                        |                                        |                                        |                                 |                          |                          | 1                        | =                        | 1,6                          |                   | in4             |
| No.                                                        | of stra    | and                      | (/)                       |                                 |                                                             |                                               | F                                                    |                                               |                                               |                                               | 4'-                                    | 0″                                     |                                        |                                        | -                               | 2"                       |                          | Уь<br>Уг                 | =                        |                              |                   | in.<br>in.      |
| Safe loads shov                                            | n inc      | lude                     | dead                      | load                            | of 10                                                       | 2                                             |                                                      |                                               |                                               |                                               |                                        |                                        |                                        |                                        |                                 | Ĩ                        |                          | Sb                       | =                        |                              |                   | in <sup>3</sup> |
| osf for untoppe                                            | d men      | nbers                    | s and                     | 15 p                            | sf fo                                                       | r 11/                                         | , E                                                  |                                               | and a start and a                             |                                               | 100                                    |                                        | 10.12(0)                               | 1.1.50                                 |                                 | -                        |                          | St                       | =                        |                              |                   | in <sup>3</sup> |
| opped membel<br>ong-time camb                              |            |                          |                           |                                 |                                                             |                                               | Í                                                    | ()                                            | (                                             | )(                                            | )(                                     |                                        | (                                      | )(                                     |                                 | [8                       | "                        | bw                       |                          | 12.                          |                   | n.              |
| dead load but                                              | do no      | ot ind                   | clude                     | live                            | load                                                        |                                               |                                                      |                                               | •                                             |                                               |                                        | _                                      | • _                                    |                                        |                                 |                          |                          | wt                       | -                        |                              |                   | olf<br>osf      |
| Check availabilit                                          |            |                          |                           |                                 |                                                             | 1                                             |                                                      |                                               |                                               |                                               |                                        |                                        |                                        |                                        |                                 |                          |                          | V/5                      | 5 =                      |                              | 2011              | n.              |
| Capacity of sect<br>tions are similar<br>local hollow-core | For p      | orecis                   | se valu                   |                                 |                                                             |                                               |                                                      |                                               |                                               | ·                                             | 5,0<br>3,5                             |                                        |                                        |                                        |                                 |                          |                          |                          |                          |                              |                   |                 |
| Key<br>346 — Safe sur                                      | erimr      | osed                     | servi                     | ice lo                          | ad n                                                        | sf                                            |                                                      |                                               |                                               |                                               |                                        |                                        |                                        |                                        |                                 |                          |                          |                          |                          | _                            |                   |                 |
| 0.3 - Estimate                                             | d can      | nber a                   | at ere                    | ction,                          | in.                                                         | 51                                            |                                                      |                                               |                                               |                                               |                                        |                                        |                                        |                                        |                                 |                          |                          |                          |                          |                              | 41                | H               |
| 0.4 — Estimate<br>able of safe                             |            |                          |                           |                                 |                                                             | ice I                                         | oad                                                  | (ps                                           | f) a                                          | nd o                                          | am                                     | bers                                   | in (in                                 | .)                                     |                                 |                          |                          |                          |                          |                              |                   | No              |
| Strand<br>Designation                                      | T          |                          |                           |                                 |                                                             |                                               |                                                      |                                               |                                               | -                                             | S                                      | pan,                                   | ft                                     |                                        |                                 |                          |                          |                          | -                        | -                            |                   | -               |
| Code                                                       | -14        | 1 15                     | 5 16                      | 17                              | 18                                                          | 19                                            | 20                                                   | 21                                            | 22                                            | 23                                            | 24                                     | 25                                     | 26                                     | 27                                     | 28                              | 29                       | 30                       | 31                       | 32                       | 33                           | 34                | 35              |
| 66 0                                                       | 346        |                          |                           |                                 | 196                                                         |                                               |                                                      |                                               |                                               |                                               | 95                                     | 85                                     | 76                                     |                                        |                                 | 55                       | 49                       |                          |                          |                              |                   |                 |
| 66-S                                                       | 0.4        |                          |                           |                                 | 0.4<br>0.5                                                  |                                               | 0.5                                                  | 0.5<br>0.6                                    | 0.5                                           | 0.5                                           | 0.5                                    | 0.5<br>0.5                             | 0.5                                    |                                        |                                 | 0.3                      | 0.3                      | 0.2                      |                          | 0.0                          |                   |                 |
| 70.0                                                       | 1          | 348                      |                           |                                 |                                                             | 204                                           |                                                      | 161                                           | 144                                           | 129                                           | 115                                    | 104                                    | 93                                     | 84                                     | 76                              | 68                       | 62                       | 56                       | 50                       | 45                           | 41                | 3               |
| 76-S                                                       |            | 0.4                      |                           |                                 | 0.5                                                         |                                               | 0.6                                                  | 0.6<br>0.8                                    | 0.7<br>0.8                                    | 0.7                                           | 0.7                                    | 0.7                                    | 0.7                                    |                                        |                                 | 0.6                      | 0.6                      |                          |                          |                              | 0.2               | 0.<br>-0.       |
|                                                            | 1          | 350                      | 325                       | 304                             | 286                                                         | 265                                           | 236                                                  | 211                                           | 189                                           | 170                                           | 154                                    | 139                                    | 126                                    | 114                                    | 104                             | 95                       | 86                       | 79                       | 72                       | 66                           | 60                | 5               |
| 58-S                                                       |            | 0.5                      |                           |                                 | 0.7                                                         | 0.8                                           | 0.8                                                  | 0.9                                           | 0.9                                           | 1.0                                           | 1.0                                    | 1.1                                    | 1.1                                    | 1.1                                    | 1.1                             | 1.1                      | 1.1                      | 1.1                      | 1.0<br>0.8               | 1.0<br>0.7                   | 0.9               | 0.              |
|                                                            |            |                          | 334                       |                                 | 292                                                         | 274                                           | 258                                                  | 243                                           | 229                                           | 206                                           | 187                                    | 169                                    | 154                                    | 140                                    | 128                             | 117                      | 107                      | 98                       | 90                       | 83                           | 76                | 7               |
| 68-S                                                       |            |                          | 0.7                       | 0.8                             | 0.9                                                         | 1.0                                           | 1.1                                                  | 1.1<br>1.4                                    | 1.2                                           | 1.3<br>1.6                                    | 1.3<br>1.6                             | 1.4<br>1.7                             | 1.5<br>1.7                             | 1.5<br>1.7                             | 1.5<br>1.7                      | 1.6<br>1.7               | 1.6<br>1.7               |                          | 1.6<br>1.5               | 1.6<br>1.4                   | 1.5<br>1.3        | 1.              |
|                                                            | -          |                          | 343                       | 319                             | 301                                                         | 283                                           | 267                                                  | 249                                           | 237                                           | 225                                           | 212                                    | 197                                    | 181                                    | 165                                    | 151                             | 139                      | 127                      | 117                      | 108                      | 100                          | 92                | 8               |
| 78-S                                                       |            |                          | 0.9                       | 1.0                             | 1.1                                                         | 1.2                                           | 1.3                                                  | 1.4<br>1.8                                    | 1.5<br>1.9                                    | 1.6<br>2.0                                    | 1.7                                    | 1.7                                    | 1.8                                    | 1.9                                    | 2.0                             | 2.0                      | 2.1                      |                          | 2.1                      | 2.2                          | 2.2               | 2.              |
| able of safe                                               | sup        | erim                     | pos                       | ed s                            | ervi                                                        | ce l                                          | oad                                                  | (ps                                           | f) a                                          | nd c                                          | aml                                    | Spar                                   |                                        | .)                                     |                                 |                          |                          | 2″ N                     | lorm                     |                              | <b>LH</b><br>Veig |                 |
| Strand                                                     |            | 17                       | 18                        | 19                              | 20                                                          | 21                                            | 22                                                   | 23                                            | 24                                            | 25                                            | 26                                     | 27                                     | 28                                     | 29                                     | 30                              | 31                       | 32                       | 33                       | 34                       | 35                           | 36                | 37              |
|                                                            | 16         | -                        |                           | 211                             | 186                                                         | 163                                           | 144                                                  | 127                                           | 113                                           | 100                                           | 88                                     | 78                                     | 69                                     | 60                                     | 53                              | 45                       |                          |                          |                          |                              |                   |                 |
| Strand<br>Designation<br>Code                              | 320        |                          | 100 million - 100 million | 0.5<br>0.5                      | 0.5<br>0.5                                                  | 0.5                                           | 0.5<br>0.4                                           | 0.5<br>0.3                                    | 0.5<br>0.3                                    | 0.5                                           | 0.5                                    | 0.4                                    | 0.4                                    | 0.3                                    | 0.3                             | 0.2                      |                          |                          |                          |                              |                   |                 |
| Strand<br>Designation                                      | 320<br>0.4 | 0.4                      |                           |                                 | 222                                                         |                                               | 174                                                  | 155                                           | 138                                           | 0.2                                           | 109                                    | -0.1<br>98                             | -0.3                                   | -0.5                                   | -0.7<br>69                      | -1.0<br>61               | 52                       | 43                       |                          |                              |                   |                 |
| Strand<br>Designation<br>Code                              | 320        | 0.4                      | 0.5                       | 251                             | 666                                                         |                                               | 0.7                                                  | 0.7                                           | 0.7                                           | 0.7                                           | 0.7                                    | 0.7                                    | 0.6                                    | 0.6                                    | 0.6                             | 0.5                      | 0.4                      | 0.3                      |                          |                              |                   |                 |
| Strand<br>Designation<br>Code                              | 320<br>0.4 | 0.4<br>0.5<br>327<br>0.5 | 0.5<br>286<br>0.5         | 251<br>0.6                      | 0.6                                                         | 0.6                                           |                                                      |                                               | 0.5                                           | 04                                            | 0.3                                    |                                        |                                        |                                        | -0.3                            | -0.6                     | -0.9                     | -1.2                     | 62                       | 53                           | 45                | _               |
| Strand<br>Designation<br>Code<br>66-S                      | 320<br>0.4 | 0.4<br>0.5<br>327<br>0.5 | 0.5<br>286                | 251<br>0.6<br>0.6               | 0.6<br>0.6                                                  | 0.6                                           | 0.6                                                  |                                               |                                               |                                               | 150                                    | 135                                    |                                        |                                        | 35                              |                          |                          |                          |                          |                              | C+                |                 |
| Strand<br>Designation<br>Code<br>66-S                      | 320<br>0.4 | 0.4<br>0.5<br>327<br>0.5 | 0.5<br>286<br>0.5         | 251<br>0.6<br>0.6<br>327        | 0.6<br>0.6                                                  |                                               | 0.6<br>231                                           |                                               |                                               |                                               | 150<br>1.1                             | 135<br>1.1                             | 1.1                                    |                                        | 1.1                             | 1.0                      | 1.0                      | 1.0                      | 0.9                      | 0.8                          | 0.7               |                 |
| Strand<br>Designation<br>Code<br>66-S<br>76-S              | 320<br>0.4 | 0.4<br>0.5<br>327<br>0.5 | 0.5<br>286<br>0.5         | 251<br>0.6<br>0.6<br>327<br>0.8 | 0.6<br>0.6<br>290<br>0.8<br>0.9                             | 0.6<br>258<br>0.9<br>1.0                      | 0.6<br>231<br>0.9<br>1.0                             | 206<br>1.0<br>1.0                             | 185<br>1.0<br>1.0                             | 167<br>1.1<br>0.9                             | 1.1<br>0.9                             | 1.1<br>0.8                             | 1.1<br>0.7                             | 1.1<br>0.6                             | 0.4                             | 0.2                      | 0.0                      | -0.2                     | -0.5                     | -0.9                         | -1.3              |                 |
| Strand<br>Designation<br>Code<br>66-S<br>76-S              | 320<br>0.4 | 0.4<br>0.5<br>327<br>0.5 | 0.5<br>286<br>0.5         | 251<br>0.6<br>0.6<br>327<br>0.8 | 0.6<br>0.6<br>290<br>0.8<br>0.9<br>323                      | 0.6<br>258<br>0.9<br>1.0<br>304               | 0.6<br>231<br>0.9<br>1.0<br>278                      | 206<br>1.0<br>1.0<br>250                      | 185<br>1.0<br>1.0<br>225                      | 167<br>1.1<br>0.9<br>204                      | 1.1<br>0.9<br>184                      | 1.1<br>0.8<br>167                      | 1.1<br>0.7<br>151                      | 1.1<br>0.6<br>138                      | 0.4                             | 0.2<br>114               | 0.0<br>103               | -0.2<br>93               | -0.5<br>83               | -0.9 ·<br>73                 | -1.3<br>64        | 56<br>1.3       |
| Strand<br>Designation<br>Code<br>66-S<br>76-S<br>58-S      | 320<br>0.4 | 0.4<br>0.5<br>327<br>0.5 | 0.5<br>286<br>0.5         | 251<br>0.6<br>0.6<br>327<br>0.8 | 0.6<br>0.6<br>290<br>0.8<br>0.9<br>323<br>1.1<br>1.2        | 0.6<br>258<br>0.9<br>1.0<br>304<br>1.1<br>1.3 | 0.6<br>231<br>0.9<br>1.0<br>278<br>1.2<br>1.3        | 206<br>1.0<br>1.0<br>250<br>1.3<br>1.4        | 185<br>1.0<br>1.0<br>225<br>1.3<br>1.4        | 167<br>1.1<br>0.9<br>204<br>(1.4<br>1.4       | 1.1<br>0.9<br>184<br>1.5<br>1.4        | 1.1<br>0.8<br>167<br>1.5<br>1.3        | 1.1<br>0.7<br>151<br>1.5<br>1.3        | 1.1<br>0.6<br>138<br>1.6<br>1.2        | 0.4<br>125<br>1.6<br>1.1        | 0.2<br>114<br>1.6<br>0.9 | 0.0<br>103<br>1.6<br>0.8 | -0.2<br>93<br>1.6<br>0.6 | -0.5<br>83<br>1.5<br>0.3 | -0.9 -<br>73<br>1.5<br>0.0 - | -1.3<br>64        | 1.3             |
| Strand<br>Designation<br>Code<br>66-S<br>76-S<br>58-S      | 320<br>0.4 | 0.4<br>0.5<br>327<br>0.5 | 0.5<br>286<br>0.5         | 251<br>0.6<br>0.6<br>327<br>0.8 | 0.6<br>0.6<br>290<br>0.8<br>0.9<br>323<br>1.1<br>1.2<br>332 | 0.6<br>258<br>0.9<br>1.0<br>304<br>1.1        | 0.6<br>231<br>0.9<br>1.0<br>278<br>1.2<br>1.3<br>297 | 206<br>1.0<br>1.0<br>250<br>1.3<br>1.4<br>279 | 185<br>1.0<br>1.0<br>225<br>1.3<br>1.4<br>263 | 167<br>1.1<br>0.9<br>204<br>1.4<br>1.4<br>238 | 1.1<br>0.9<br>184<br>1.5<br>1.4<br>216 | 1.1<br>0.8<br>167<br>1.5<br>1.3<br>197 | 1.1<br>0.7<br>151<br>1.5<br>1.3<br>179 | 1.1<br>0.6<br>138<br>1.6<br>1.2<br>163 | 0.4<br>125<br>1.6<br>1.1<br>149 | 0.2<br>114<br>1.6<br>0.9 | 0.0<br>103<br>1.6<br>0.8 | -0.2<br>93<br>1.6        | -0.5<br>83<br>1.5<br>0.3 | -0.9<br>73<br>1.5            | -1.3<br>64<br>1.4 | 1.3             |


#### PCI Design Handbook/Fifth Edition

• .


2-27

4 Steel Design For Hollow-core Planks Loads: Dead: Misc. DL = 15 PSF PIANKS = 68 PSF 83 PSF 50 SHEETS 100 SHEETS 200 SHEETS Live : Office = 100 PSF (reducible) 22-141 22-142 22-144 construction: Dead = 68 PSF Live = 20 PSF ÉAMPAD'

Results of Steel Framing Member Design for Hollow-core Plank Flooring System – RAM Output



Precast Double Tees with Precast Framing System



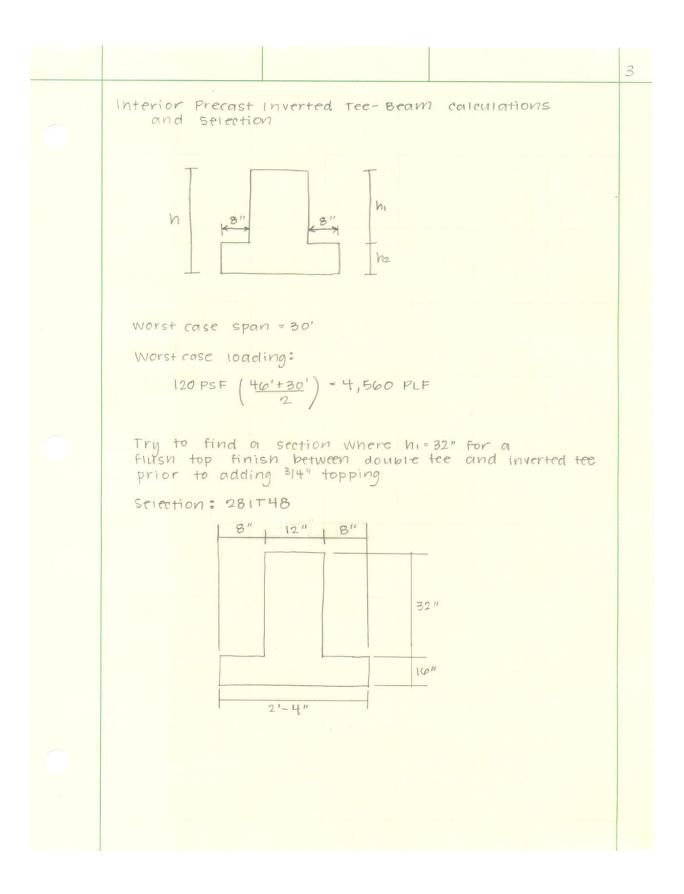
# Precast Double Tee Calculations and Selection

Summary of possible double tee sections taken from PCI Design Handbook, 5<sup>th</sup> edition.

| PCI Designation | Strand<br>Pattern | LW*<br>vs.<br>NW* | Additional 2"<br>Normal<br>Weight<br>Topping? | Self<br>Weight<br>(PSF) | Total<br>Depth<br>(IN) | Width<br>(FT) | Safe<br>Superimposed<br>Service Load<br>(PSF) |
|-----------------|-------------------|-------------------|-----------------------------------------------|-------------------------|------------------------|---------------|-----------------------------------------------|
| Double Tee      |                   |                   |                                               |                         |                        |               |                                               |
| 10LDT32         | 128-D1            | LW                | No                                            | 49                      | 32                     | 10            | 130                                           |
| 10LDT32+2       | 108-D1            | LW                | Yes                                           | 74                      | 34                     | 10            | 150                                           |
| 10DT32          | 128-D1            | NW                | No                                            | 64                      | 32                     | 10            | 182                                           |
| 10DT32+2        | 108-D1            | NW                | Yes                                           | 89                      | 34                     | 10            | 138                                           |

LW = Lightweight Concrete

NW = Normal Weight Concrete


The self weight of the double tees was accounted for in the member capacities.

## Selection: 10LDT32 110 PSF < 130 PSF ∴ OK

12 strands 8/16" = 0.5" diameter strands 1 depression point f'c = 5,000 psi  $f_{pu} = 270,000$  psi 2.4" estimated camber at erection 2.9" estimated long-time camber

This selection was made because this member has the lightest self weight and the smallest depth. Although, a topped section is preferred for stability and the prevention of differential movement between the double tee beams, an untopped section was selected and it is anticipated that a <sup>3</sup>/<sub>4</sub>" normal weight topping could be added on top of the double tees and their supporting beams in order to add that stability, yet keep self weight to a minimum. With the added weight of the topping, the new safe superimposed service load increases 110 PSF to 120 PSF, and the member can carry 130 PSF so it is still OK.

120 PSF < 130 PSF ∴ OK

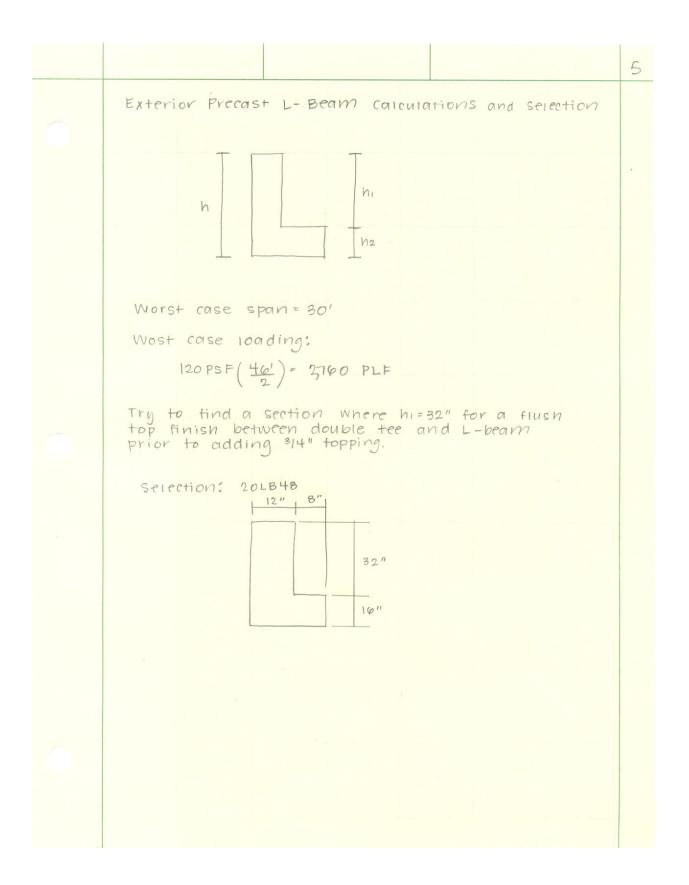


# Interior Precast Inverted Tee Beam Calculations and Selection

In order to get a flush finish across the top of the double tees and the supporting inverted tee beam prior to adding the additional  $\frac{3}{4}$ " topping, h<sub>1</sub> has to be 32".

Summary of possible inverted tee beam sections taken from PCI Design Handbook, 5<sup>th</sup> edition.

| PCI Designation                    | h (IN) | h <sub>1</sub> (IN) | h <sub>2</sub> (IN) | Self<br>weight<br>(PLF) | Safe Superimposed<br>Service Load<br>Capacity (PLF) |
|------------------------------------|--------|---------------------|---------------------|-------------------------|-----------------------------------------------------|
| Members with $h_1 = 32$ "          |        |                     |                     |                         |                                                     |
| 28IT48                             | 48     | 32                  | 16                  | 867                     | At least 9,741                                      |
| 34IT48                             | 48     | 32                  | 16                  | 1,167                   | At least 9,049                                      |
| 40IT48                             | 48     | 32                  | 16                  | 1,467                   | At least 9,808                                      |
| Members selected based on capacity |        |                     |                     |                         |                                                     |
|                                    |        |                     |                     |                         |                                                     |
| 28IT32                             | 32     | 20                  | 12                  | 600                     | 4,698                                               |
| 34IT28                             | 28     | 16                  | 12                  | 725                     | 5,316                                               |
| 40IT24                             | 12     | 12                  | 12                  | 800                     | 5,060                                               |


### Selection: 28IT48

### 4,560 PLF < 9,741 PLF ∴ OK

22 strands 8/16'' = 0.5'' diameter strands low-lax strands f'c = 5,000 psi f<sub>pu</sub> = 270,000 psi 0.4'' estimated camber at erection 0.1'' estimated long-time camber

This member was selected because it was the lightest section that had an  $h_1 = 32$ " so that the top of the double tees and the top of the inverted tee beam would be flush. The disadvantage is that the inverted tee beam will extend 16" below the bottom of the double tees. This should not be a significant problem since the interior inverted tee beams will span along the perimeter of the central core.

Possible alternative tee beam members of smaller sizes were listed, but the top of the double tee beam will be higher than the top of the inverted tee beam. This difference in height will result in a void that needs to be filled in order to have a continuous flat floor finish. Even if a smaller section was selected, the bottom of the beam would still extend beyond the bottom of the double tee beams because of the depth of the flanges that the double tee beams need to rest on.



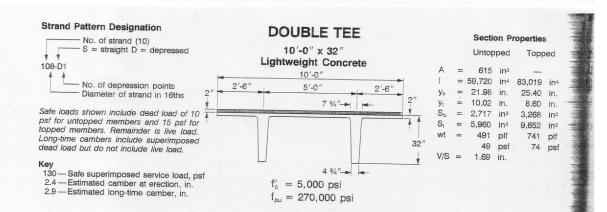
# Exterior Precast L-Beam Calculations and Selection

In order to get a flush finish across the top of the double tees and the supporting inverted tee beam prior to adding the additional  $\frac{3}{4}$ " topping, h<sub>1</sub> has to be 32".

Summary of possible L-beam sections taken from PCI Design Handbook, 5<sup>th</sup> edition.

| PCI Designation                    | h (IN) | h <sub>1</sub> (IN) | h <sub>2</sub> (IN) | Self<br>weight<br>(PLF) | Safe Superimposed<br>Service Load<br>Capacity (PLF) |
|------------------------------------|--------|---------------------|---------------------|-------------------------|-----------------------------------------------------|
| Members with $h_1 = 32$ "          |        |                     |                     |                         |                                                     |
| 20LB48                             | 48     | 32                  | 16                  | 733                     | At least 9,231                                      |
| 26LB48                             | 48     | 32                  | 16                  | 1,033                   | At least 9,590                                      |
| Members selected based on capactiy |        |                     |                     |                         |                                                     |
|                                    |        | 10                  | 40                  | 450                     | 0.440                                               |
| 20LB28                             | 28     | 16                  | 12                  | 450                     | 3,416                                               |
| 26LB24                             | 24     | 12                  | 12                  | 550                     | 3,718                                               |

### Selection: 20LB48


2,760 PLF < 9,231 PLF ∴ OK

21 strands 8/16" = 0.5" diameter strands low-lax strands f'c = 5,000 psi f<sub>pu</sub> = 270,000 psi 0.5" estimated camber at erection

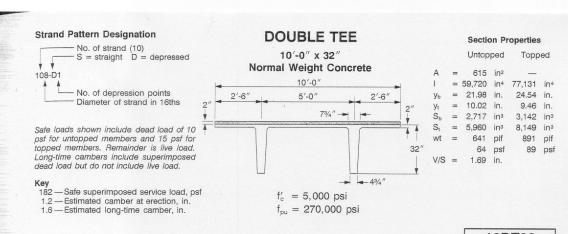
0.2" estimated long-time camber

This member was selected because it was the lightest section that had an  $h_1 = 32$ " so that the top of the double tees and the top of the L-beam would be flush. The disadvantage is that the L-beam will extend 16" below the bottom of the double tees. This should not be a significant problem since the interior inverted tee beams will span along the perimeter of the central core.

Possible alternative L-beam members of smaller sizes were listed, but the top of the double tee beam will be higher than the top of the L-beam. This difference in height will result in a void that needs to be filled in order to have a continuous flat floor finish. Even if a smaller section was selected, the bottom of the beam would still extend beyond the bottom of the double tee beams because of the depth of the flange that the double tee beams need to rest on.



# Table of safe superimposed service load (psf) and cambers (in.)


10LDT32 No Topping

| Strand  | e <sub>e, in.</sub>  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  | S                       | pan,                    | ft                      |                         |                         |                  |                  |                  | -                |                  |                  |                  |                  |
|---------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Pattern | e <sub>c</sub> , in. | 54                | 56                | 58                | 60                | 62                | 64                | 66                | 68                | 70                | 72               | 74                      | 76                      | 78                      | 80                      | 82                      | 84               | 86               | 88               | 90               | 92               | 04               | 00               |                  |
| 128-D1  | 12.81<br>18.73       | 130<br>2.4<br>2.9 | 118<br>2.5<br>3.0 | 108<br>2.6<br>3.0 | 98<br>2.7<br>3.0  | 89<br>2.7<br>3.0  | 82<br>2.7<br>2.9  | 74<br>2.8<br>2.9  | 68<br>2.8<br>2.8  | 62<br>2.8<br>2.7  | 56<br>2.7<br>2.5 | 51<br>2.7               | 47<br>2.6               | 42<br>2.5               | 38<br>2.4               | 35<br>2.2               | 31<br>2.0        | 00               | 00               | 50               | 52               | 94               | 96               | 98               |
| 148-D1  | 10.48<br>18.48       | 153<br>2.7<br>3.3 | 139<br>2.8<br>3.4 | 127<br>2.9<br>3.5 | 116<br>3.0<br>3.5 | 107<br>3.1<br>3.6 | 98<br>3.2<br>3.6  | 89<br>3.3<br>3.6  | 82<br>3.3<br>3.5  | 75<br>3.4<br>3.4  | 69<br>3.3<br>3.2 | 2.3<br>63<br>3.3<br>3.0 | 2.1<br>58<br>3.3<br>2.9 | 1.8<br>53<br>3.2        | 1.5<br>49<br>3.1        | 1.1<br>44<br>3.0        | 0.6<br>40<br>2.8 | 37<br>2.6        | 33<br>2.4        |                  |                  |                  |                  |                  |
| 168-D1  | 8.98<br>18.23        | 175<br>2.9<br>3.7 | 160<br>3.1<br>3.8 | 147<br>3.2<br>3.9 | 135<br>3.3<br>4.0 | 124<br>3.5<br>4.1 | 114<br>3.6<br>4.1 | 105<br>3.7<br>4.2 | 96<br>3.8<br>4.2  | 89<br>3.8<br>4.1  | 82<br>3.9<br>4.0 | 75<br>3.9<br>3.9        | 69<br>4.0<br>3.8        | 2.6<br>64<br>3.9<br>3.5 | 2.3<br>59<br>3.9<br>3.2 | 2.0<br>54<br>3.8<br>2.9 | 1.6<br>50<br>3.6 | 1.2<br>46<br>3.5 | 0.7<br>42<br>3.3 | 38<br>3.1        | 35<br>2.8        |                  |                  |                  |
| 188-D1  | 7.59<br>17.98        |                   |                   |                   | 2                 |                   |                   |                   | 110<br>4.1<br>4.7 | 101<br>4.2<br>4.7 | 94<br>4.3<br>4.7 | 87<br>4.4<br>4.6        | 80<br>4.4<br>4.5        | 74<br>4.4<br>4.3        | 69<br>4.4<br>4.1        | 63<br>4.4               | 2.6<br>59<br>4.4 | 2.2<br>54<br>4.3 | 1.7<br>50<br>4.1 | 1.2<br>46<br>3.9 | 0.7<br>42<br>3.7 | 39<br>3.4        | 36<br>3.1        |                  |
| 208-D1  | 6.48<br>17.73        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  |                         | 4.5                     | 84<br>4.9               | 78<br>4.9               | 3.8<br>72<br>4.9        | 3.5<br>67<br>4.9 | 3.1<br>62<br>4.9 | 2.6<br>58<br>4.8 | 2.1<br>53<br>4.7 | 1.6<br>48<br>4.5 | 1.0<br>44<br>4.3 | 0.4<br>41<br>4.0 | 38               |
| 228-D1  | 5.57<br>17.48        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  |                         |                         | 5.0                     | 4.8                     | 4.6                     | 4.3              | 4.0<br>70<br>5.4 | 3.6<br>64<br>5.4 | 3.1<br>59<br>5.3 | 2.6<br>55<br>5.2 | 2.0<br>50<br>5.0 | 1.3<br>46<br>4.8 | 0.6<br>42<br>4.6 |
|         |                      |                   | 1000              |                   | -                 |                   | 10.55             |                   | 140               | 0.972             | -                | 1000                    | 11-1-1                  | 1                       | 6                       | har is                  | and a second     | 4.8              | 4.5              | 4.1              | 3.6              | 3.0              | 2.4              | 1.6              |

## 10LDT32+2

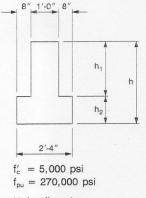
| Strand  | e <sub>e, in.</sub>  |                   |                   |                   |                   |                   |                   |                          |                          |                         | a canta           | S                       | pan,                    | ft                | -                |                  |                  |                  |                  |                  |                  |           | oppin |
|---------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|--------------------------|-------------------------|-------------------|-------------------------|-------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------|-------|
| Pattern | e <sub>c</sub> , in. | 42                | 44                | 46                | 48                | 50                | 52                | 54                       | 56                       | 58                      | 60                | 62                      | 64                      | 66                | 68               | 70               | 72               | 74               | 76               | 78               | 80               | 82        |       |
| 108-D1  | 16.08<br>18.98       | 192<br>1.5<br>1.5 | 169<br>1.6<br>1.5 | 150<br>1.7<br>1.6 | 133<br>1.8<br>1.6 | 118<br>1.9<br>1.6 | 105<br>2.0<br>1.6 | 93<br>2.1<br>1.5         | 82<br>2.1                | 73                      | 64<br>2.2         | 56<br>2.2               | 49<br>2.3               | 43<br>2.3         |                  |                  | 12               | 14               | 70               | 10               | 00               | 02        |       |
| 128-D1  | 12.81<br>18.73       |                   |                   | 188<br>2.0<br>1.9 | 168<br>2.1<br>2.0 | 150<br>2.1<br>1.9 | 135<br>2.3<br>2.0 | 1.5<br>121<br>2.4<br>2.0 | 1.4<br>108<br>2.5<br>1.9 | 1.3<br>97<br>2.6<br>1.8 | 1.2<br>87<br>2.7  | 1.0<br>77<br>2.7<br>1.5 | 0.8<br>69<br>2.8<br>1.3 | 0.5<br>61<br>2.8  | 55<br>2.8        | 48<br>2.8        |                  |                  |                  |                  |                  |           |       |
| 148-D1  | 10.48<br>18.48       |                   | e Anniel          |                   | 199<br>2.3<br>2.2 | 178<br>2.4<br>2.3 | 161<br>2.5<br>2.3 | 145<br>2.7<br>2.3        | 130<br>2.8<br>2.3        | 118<br>2.9<br>2.3       | 106<br>3.0<br>2.2 | 96<br>3.1<br>2.1        | 86<br>3.2<br>1.9        | 1.1<br>77<br>3.3  | 0.8<br>70<br>3.3 | 0.5<br>62<br>3.4 | 56<br>3.3        | 50<br>3.3        |                  |                  |                  |           |       |
| 168-D1  | 8.98<br>18.23        |                   |                   |                   |                   |                   |                   | 168<br>2.9<br>2.7        | 152<br>3.1<br>2.7        | 138<br>3.2<br>2.7       | 125<br>3.3<br>2.6 | 113<br>3.5<br>2.5       | 103<br>3.6<br>2.4       | 1.7<br>93<br>3.7  | 1.4<br>84<br>3.8 | 1.1<br>76<br>3.8 | 0.7<br>69<br>3.9 | 0.3<br>62<br>3.9 | 56<br>4.0        |                  |                  |           |       |
| 188-D1  | 7.59<br>17.98        |                   |                   |                   |                   |                   | (                 |                          | -,1                      | <u> </u>                | 2.0               | 2.0                     | 2.4                     | 2.2<br>108<br>4.0 | 2.0<br>99<br>4.1 | 1.8<br>90<br>4.2 | 1.5<br>82<br>4.3 | 1.1<br>74<br>4.4 | 0.7<br>67<br>4.4 | 61<br>4.4        | 55<br>4.4        |           |       |
| 208-D1  | 6.48<br>17.43        |                   |                   | 1                 |                   | 1                 |                   |                          |                          |                         |                   |                         |                         | 2.7               | 2.5              | 2.3              | 2.0              | 1.7              | 1.3<br>78<br>4.8 | 0.8<br>71<br>4.9 | 0.3<br>65<br>4.9 | 58<br>4.9 |       |

Strength based on strain compatibility; bottom tension limited to  $12\sqrt{t_c}$ ; see pages 2-2-2-6 for explanation. Shaded values require release strengths higher than 3500 psi.



10DT32

| e <sub>e</sub> , in.<br>e <sub>c</sub> , in.<br>12.81<br>18.73 | 46<br>1,82<br>1.2<br>1.6                        | 48<br>163<br>1.3<br>1.6                                 | 50<br>146<br>1.3                                                                                        | <b>52</b><br>131                                                                                                                                             | 54<br>118                                                                                                                                                                                  | 56                                                                                                                                                                                                                                                          | 58                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                 | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                          | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.73                                                          | 1.2                                             | 1.3                                                     | 15 12                                                                                                   | 131                                                                                                                                                          | 110                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                    | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                               | 68                                                                                                                                                                                                                                                                                                                                                                       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                | 1.6                                             | 1.6                                                     |                                                                                                         | 1.4                                                                                                                                                          | 1.4                                                                                                                                                                                        | 106<br>1.4                                                                                                                                                                                                                                                  | 95<br>1.5                                                                                                                                                                                                                                                                                  | 86<br>1.5                                                                                                                                                                                                                                                                                          | 77<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62<br>1.4                                                                                                                                                                                                                                                                                                                                                                                        | 55<br>1.3                                                                                                                                                                                                                                                                                                                                                                | 49<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10.49                                                          | 1000                                            |                                                         | 1.6                                                                                                     | 1.7                                                                                                                                                          | 1.7                                                                                                                                                                                        | 1.7                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                        | 1.6                                                                                                                                                                                                                                                                                                | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18.48                                                          |                                                 | 191<br>1.4                                              | 172<br>1.5                                                                                              | 155<br>1.6                                                                                                                                                   | 140<br>1.6                                                                                                                                                                                 | 127<br>1.7                                                                                                                                                                                                                                                  | 115<br>1.7                                                                                                                                                                                                                                                                                 | 104<br>1.7                                                                                                                                                                                                                                                                                         | 94<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77<br>1.7                                                                                                                                                                                                                                                                                                                                                                                        | 70<br>1.7                                                                                                                                                                                                                                                                                                                                                                | 63<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10.40                                                          | 12.00                                           | 1.8                                                     | 1.9                                                                                                     | 1.9                                                                                                                                                          | 2.0                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                         | 2.0                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                                                                              | 1.7                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.98                                                           |                                                 |                                                         | 199<br>1.6                                                                                              | 180<br>1.7                                                                                                                                                   | 163<br>1.8                                                                                                                                                                                 | 148<br>1.9                                                                                                                                                                                                                                                  | 134<br>1.9                                                                                                                                                                                                                                                                                 | 122<br>2.0                                                                                                                                                                                                                                                                                         | 111<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92<br>2.1                                                                                                                                                                                                                                                                                                                                                                                        | 84<br>2.1                                                                                                                                                                                                                                                                                                                                                                | 76<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TOILO                                                          | C CONT                                          | A STOCK                                                 | 2.1                                                                                                     | 2.2                                                                                                                                                          | 2.2                                                                                                                                                                                        | 2.3                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                        | 2.3                                                                                                                                                                                                                                                                                                | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                              | 2.1                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.59                                                           |                                                 |                                                         |                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            | 140<br>2.2                                                                                                                                                                                                                                                                                         | 127<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107<br>2.3                                                                                                                                                                                                                                                                                                                                                                                       | 97<br>2.3                                                                                                                                                                                                                                                                                                                                                                | 89<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                |                                                 |                                                         |                                                                                                         | 10.00                                                                                                                                                        | 10.5                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            | 2.6                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.48<br>17.73                                                  |                                                 |                                                         |                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5                                                                                                                                                                                                                                                                                                                                                                      | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66<br>2.4<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>2.3<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.57<br>17.48                                                  |                                                 |                                                         |                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75<br>2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58<br>2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 8.98<br>18.23<br>7.59<br>17.98<br>6.48<br>17.73 | 8.98<br>18.23<br>7.59<br>17.98<br>6.48<br>17.73<br>5.57 | 8.98         1.8           18.23         7.59           17.98         6.48           17.73         5.57 | 1.8         1.9           1.8.23         199           18.23         2.1           7.59         2.1           6.48         17.73           5.57         5.57 | 1.8         1.9         1.9           8.98         199         180           18.23         1.6         1.7           7.59         2.1         2.2           7.79         7.73         5.57 | 1.8         1.9         1.9         2.0           8.98         199         180         163           18.23         2.1         2.2         2.2           7.59         7.59         7.73         7.73           6.48         17.73         5.57         7.57 | 1.8         1.9         1.9         2.0         2.0           8.98         199         180         163         148           18.23         1.6         1.7         1.6         1.9           7.59         2.1         2.2         2.2         2.3           7.79         7.73         5.57 | 1.8       1.9       1.9       2.0       2.0       2.0         8.98       199       180       163       148       134         18.23       2.1       2.2       2.2       2.3       2.3         7.59       2.1       2.2       2.2       2.3       2.3         6.48       17.73       5.57       5.57 | 1.8         1.9         1.9         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0 <td>1.8         1.9         1.9         2.0         2.0         2.0         1.9         1.9           8.98         199         180         163         148         134         122         111           18.23         1.6         1.7         1.8         1.9         2.0         2.0         2.3         2.3         2.3           7.59         2.1         2.2         2.2         2.3         2.3         2.3         2.3           17.98         2.1         2.2         2.2         2.6         2.6           6.48         17.73         5.57         5.57         5.57         5.57         5.57</td> <td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9       8.98     199     180     163     148     134     122     111     101       18.23     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3       7.59     7.59     140     127     117     117     122     2.2     2.3       7.79     2.2     2.2     2.3     2.6     2.6     2.6       6.48     17.73     5.57     5.57</td> <td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8       8.98     199     180     163     148     134     122     111     101     92       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1       7.59     140     127     117     107       17.98     2.6     2.6     2.6     2.6     2.6       6.48     17.73       5.57</td> <td>1.8         1.9         1.9         2.0         2.0         2.0         2.0         1.9         1.8         1.7.           8.98         199         180         163         148         134         122         111         101         92         84           18.23         1.16         1.7         1.8         1.9         1.8         1.7         10.9         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0<td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5       8.98     199     180     163     148     134     122     111     101     92     84     76       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.1     2.1     2.1     2.0       7.59     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.4     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6</td><td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.9       1.8       1.7       1.5       1.4         8.98       1.99       180       163       148       134       122       111       101       92       84       76       69         18.23       2.1       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.2       2.1       2.0       1.9         7.59       2.1       2.2       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3</td><td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5     1.4     1.2       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.0     2.1     2.1     2.0     1.9       7.59     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3</td><td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.8     1.7     1.5     1.4     1.2     0.9       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57       1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1     2.0     1.9     1.8       1.6     1.7     1.8     1.9     2.0     2.0     2.0     2.1     2.0     1.9     1.8       2.1     2.2     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.</td><td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.8     1.7     1.5     1.4     1.2     0.9     0.5       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57     52       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1     2.0     2.0     1.9     1.8     1.7       7.59     1.2     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     <t< td=""><td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5     1.4     1.2     0.9     0.5       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57     52     46       1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.1     2.1     2.0     1.9     1.8     1.7     1.5       2.1     2.2     2.2     2.3     2.3     2.3     2.3     2.2     2.1     2.0     1.9     1.8     1.7     1.5     1.2     0.9       7.59     140     127     117     107     97     89     81     74     68     62     56       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.5     2.4     2.3     2.3     2.3     2.3     2.4     2.0     1.8     1.5       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6</td><td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       1.99       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.5       1.4       1.2       2.0       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       1.5       1.3       1.5       1.3       1.5       1.4       1.2       0.2       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.5       1.5       1.3       1.5       1.3       1.5       1.3       1.5       1.2       2.0       2.0       1.9       1.8       1.7       1.5       1.0       1.1       1.5       1.2       0.9       0.5       1.5       1.2       1.0       1.1       1.0       1.0       1.7       1.5       1.2       1.0       1.6       1.5       1.2       1.0       1.5       1.2</td><td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       199       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         7.59       2.1       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.1       2.0       1.8       1.7</td><td>1.8       1.9       1.9       2.0       2.0       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5       57       52       46       42         1.8       1.7       1.5       1.4       1.2       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       2.0       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5         7.59       1.2       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.0       1.8       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.2       0.9       0.5       57         7.59       1.40       127       117       107       97       89       81       72       66       60       55       50</td></t<></td></td> | 1.8         1.9         1.9         2.0         2.0         2.0         1.9         1.9           8.98         199         180         163         148         134         122         111           18.23         1.6         1.7         1.8         1.9         2.0         2.0         2.3         2.3         2.3           7.59         2.1         2.2         2.2         2.3         2.3         2.3         2.3           17.98         2.1         2.2         2.2         2.6         2.6           6.48         17.73         5.57         5.57         5.57         5.57         5.57 | 1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9       8.98     199     180     163     148     134     122     111     101       18.23     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3       7.59     7.59     140     127     117     117     122     2.2     2.3       7.79     2.2     2.2     2.3     2.6     2.6     2.6       6.48     17.73     5.57     5.57 | 1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8       8.98     199     180     163     148     134     122     111     101     92       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1       7.59     140     127     117     107       17.98     2.6     2.6     2.6     2.6     2.6       6.48     17.73       5.57 | 1.8         1.9         1.9         2.0         2.0         2.0         2.0         1.9         1.8         1.7.           8.98         199         180         163         148         134         122         111         101         92         84           18.23         1.16         1.7         1.8         1.9         1.8         1.7         10.9         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0 <td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5       8.98     199     180     163     148     134     122     111     101     92     84     76       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.1     2.1     2.1     2.0       7.59     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.4     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6</td> <td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.9       1.8       1.7       1.5       1.4         8.98       1.99       180       163       148       134       122       111       101       92       84       76       69         18.23       2.1       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.2       2.1       2.0       1.9         7.59       2.1       2.2       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3</td> <td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5     1.4     1.2       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.0     2.1     2.1     2.0     1.9       7.59     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3</td> <td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.8     1.7     1.5     1.4     1.2     0.9       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57       1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1     2.0     1.9     1.8       1.6     1.7     1.8     1.9     2.0     2.0     2.0     2.1     2.0     1.9     1.8       2.1     2.2     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.</td> <td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.8     1.7     1.5     1.4     1.2     0.9     0.5       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57     52       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1     2.0     2.0     1.9     1.8     1.7       7.59     1.2     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     <t< td=""><td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5     1.4     1.2     0.9     0.5       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57     52     46       1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.1     2.1     2.0     1.9     1.8     1.7     1.5       2.1     2.2     2.2     2.3     2.3     2.3     2.3     2.2     2.1     2.0     1.9     1.8     1.7     1.5     1.2     0.9       7.59     140     127     117     107     97     89     81     74     68     62     56       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.5     2.4     2.3     2.3     2.3     2.3     2.4     2.0     1.8     1.5       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6</td><td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       1.99       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.5       1.4       1.2       2.0       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       1.5       1.3       1.5       1.3       1.5       1.4       1.2       0.2       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.5       1.5       1.3       1.5       1.3       1.5       1.3       1.5       1.2       2.0       2.0       1.9       1.8       1.7       1.5       1.0       1.1       1.5       1.2       0.9       0.5       1.5       1.2       1.0       1.1       1.0       1.0       1.7       1.5       1.2       1.0       1.6       1.5       1.2       1.0       1.5       1.2</td><td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       199       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         7.59       2.1       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.1       2.0       1.8       1.7</td><td>1.8       1.9       1.9       2.0       2.0       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5       57       52       46       42         1.8       1.7       1.5       1.4       1.2       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       2.0       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5         7.59       1.2       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.0       1.8       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.2       0.9       0.5       57         7.59       1.40       127       117       107       97       89       81       72       66       60       55       50</td></t<></td> | 1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5       8.98     199     180     163     148     134     122     111     101     92     84     76       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.1     2.1     2.1     2.0       7.59     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.4     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6 | 1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.9       1.8       1.7       1.5       1.4         8.98       1.99       180       163       148       134       122       111       101       92       84       76       69         18.23       2.1       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.2       2.1       2.0       1.9         7.59       2.1       2.2       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3 | 1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5     1.4     1.2       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.0     2.1     2.1     2.0     1.9       7.59     2.1     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3 | 1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.8     1.7     1.5     1.4     1.2     0.9       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57       1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1     2.0     1.9     1.8       1.6     1.7     1.8     1.9     2.0     2.0     2.0     2.1     2.0     1.9     1.8       2.1     2.2     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2. | 1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.8     1.7     1.5     1.4     1.2     0.9     0.5       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57     52       18.23     1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.0     2.1     2.0     2.0     1.9     1.8     1.7       7.59     1.2     2.2     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3     2.3 <t< td=""><td>1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5     1.4     1.2     0.9     0.5       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57     52     46       1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.1     2.1     2.0     1.9     1.8     1.7     1.5       2.1     2.2     2.2     2.3     2.3     2.3     2.3     2.2     2.1     2.0     1.9     1.8     1.7     1.5     1.2     0.9       7.59     140     127     117     107     97     89     81     74     68     62     56       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.5     2.4     2.3     2.3     2.3     2.3     2.4     2.0     1.8     1.5       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6</td><td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       1.99       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.5       1.4       1.2       2.0       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       1.5       1.3       1.5       1.3       1.5       1.4       1.2       0.2       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.5       1.5       1.3       1.5       1.3       1.5       1.3       1.5       1.2       2.0       2.0       1.9       1.8       1.7       1.5       1.0       1.1       1.5       1.2       0.9       0.5       1.5       1.2       1.0       1.1       1.0       1.0       1.7       1.5       1.2       1.0       1.6       1.5       1.2       1.0       1.5       1.2</td><td>1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       199       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         7.59       2.1       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.1       2.0       1.8       1.7</td><td>1.8       1.9       1.9       2.0       2.0       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5       57       52       46       42         1.8       1.7       1.5       1.4       1.2       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       2.0       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5         7.59       1.2       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.0       1.8       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.2       0.9       0.5       57         7.59       1.40       127       117       107       97       89       81       72       66       60       55       50</td></t<> | 1.8     1.9     1.9     2.0     2.0     2.0     1.9     1.9     1.8     1.7     1.5     1.4     1.2     0.9     0.5       8.98     199     180     163     148     134     122     111     101     92     84     76     69     63     57     52     46       1.6     1.7     1.8     1.9     1.9     2.0     2.0     2.1     2.1     2.0     1.9     1.8     1.7     1.5       2.1     2.2     2.2     2.3     2.3     2.3     2.3     2.2     2.1     2.0     1.9     1.8     1.7     1.5     1.2     0.9       7.59     140     127     117     107     97     89     81     74     68     62     56       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.5     2.4     2.3     2.3     2.3     2.3     2.4     2.0     1.8     1.5       17.98     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6     2.6 | 1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       1.99       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.5       1.4       1.2       2.0       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       1.5       1.3       1.5       1.3       1.5       1.4       1.2       0.2       2.0       2.0       2.1       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.5       1.5       1.3       1.5       1.3       1.5       1.3       1.5       1.2       2.0       2.0       1.9       1.8       1.7       1.5       1.0       1.1       1.5       1.2       0.9       0.5       1.5       1.2       1.0       1.1       1.0       1.0       1.7       1.5       1.2       1.0       1.6       1.5       1.2       1.0       1.5       1.2 | 1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         8.98       199       180       163       148       134       122       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       1.9       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.9       0.5         7.59       2.1       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.1       2.0       1.8       1.7 | 1.8       1.9       1.9       2.0       2.0       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5       57       52       46       42         1.8       1.7       1.5       1.4       1.2       111       101       92       84       76       69       63       57       52       46       42         1.6       1.7       1.8       1.9       2.0       2.0       2.0       2.0       1.9       1.8       1.7       1.5       1.4       1.2       0.5         7.59       1.2       2.2       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.0       1.8       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.7       1.5       1.4       1.2       0.9       0.5       57         7.59       1.40       127       117       107       97       89       81       72       66       60       55       50 |


|     |   | 1000     |            |     | -  |   |
|-----|---|----------|------------|-----|----|---|
| - 1 | 0 | D,       | <b>T</b> 3 | 0   | 1  | 2 |
| - 1 | U | <b>U</b> | 10         | ∠ • | Τ. | ~ |

| Strand  | e <sub>e, in.</sub> |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | S                 | pan,              | ft               |                   |                  |                  |                  |                  |  |
|---------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------|------------------|------------------|------------------|--|
| Pattern | e <sub>c, in.</sub> | 42                | 44                | 46                | 48                | 50                | 52                | 54                | 56                | 58                | 60                | 62                | 64                | 66               | 68                | 70               | 72               | 74               | 76               |  |
| 108-D1  | 16.08<br>18.98      | 179<br>0.9<br>0.9 | 157<br>1.0<br>1.0 | 138<br>1.1<br>1.0 | 121<br>1.1<br>0.9 | 106<br>1.1<br>0.9 | 92<br>1.2<br>0.9  | 81<br>1.2<br>0.8  | 70<br>1.2<br>0.7  | 60<br>1.2<br>0.5  | 52<br>1.2<br>0.4  |                   |                   |                  |                   |                  |                  |                  |                  |  |
| 128-D1  | 12.81<br>18.73      |                   | 199<br>1.1<br>1.1 | 176<br>1.2<br>1.2 | 156<br>1.3<br>1.2 | 138<br>1.3<br>1.2 | 122<br>1.4<br>1.1 | 108<br>1.4<br>1.1 | 96<br>1.4<br>1.0  | 85<br>1.5<br>0.9  | 74<br>1.5<br>0.7  | 65<br>1.4<br>0.6  | 57<br>1.4<br>0.4  |                  |                   |                  |                  |                  |                  |  |
| 148-D1  | 10.48<br>18.48      |                   |                   |                   | 186<br>1.4<br>1.4 | 166<br>1.5<br>1.4 | 148<br>1.6<br>1.4 | 132<br>1.6<br>1.3 | 118<br>1.7<br>1.3 | 1.5<br>1.7<br>1.2 | 94<br>1.7<br>1.1  | 83<br>1.8<br>0.9  | 74<br>1.7<br>0.8  | 65<br>1.7<br>0.5 | 57<br>1.7<br>0.3  |                  |                  |                  |                  |  |
| 168-D1  | 8.98<br>18.23       |                   |                   |                   |                   | 194<br>1.6<br>1.6 | 174<br>1.7<br>1.6 | 156<br>1.8<br>1.6 | 140<br>1.9<br>1.5 | 126<br>1.9<br>1.5 | 113<br>2.0<br>1.4 | 101<br>2.0<br>1.3 | 91<br>2.0<br>1.1  | 81<br>2.1<br>0.9 | 72<br>2.1<br>0.7  | 64<br>2.0<br>0.5 |                  |                  |                  |  |
| 188-D1  | 7.59<br>17.98       |                   |                   |                   |                   |                   |                   |                   |                   | 145<br>2.1<br>1.7 | 131<br>2.2<br>1.7 | 118<br>2.2<br>1.6 | 107<br>2.3<br>1.4 | 96<br>2.3<br>1.3 | 86<br>2.3<br>1.1  | 77<br>2.3<br>0.8 | 69<br>2.3<br>0.5 | 62<br>2.3<br>0.2 |                  |  |
| 208-D1  | 6.48<br>17.73       |                   |                   |                   |                   |                   |                   |                   |                   |                   | 4                 |                   |                   |                  | 100<br>2.5<br>1.4 | 90<br>2.6<br>1.2 | 82<br>2.6<br>0.9 | 73<br>2.6<br>0.6 | 66<br>2.5<br>0.2 |  |

Strength based on strain compatibility; bottom tension limited to  $12\sqrt{f'_c}$ ; see pages 2-2-2-6 for explanation. Shaded values require release strengths higher than 3500 psi.

#### **INVERTED TEE BEAMS**

#### Normal Weight Concrete

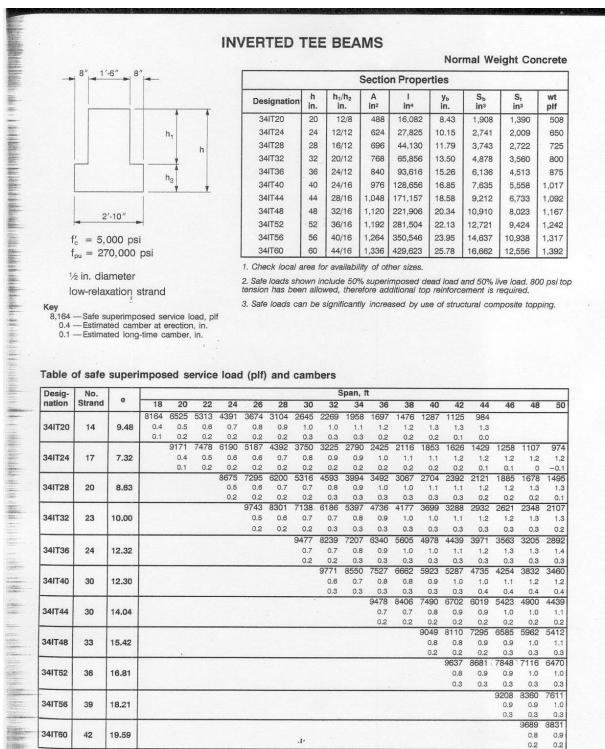


**Section Properties** S<sub>t</sub> in<sup>3</sup> h<sub>1</sub>/h<sub>2</sub> in. S<sub>b</sub> in<sup>3</sup> wt h in. A in<sup>2</sup> yь in. Designation in4 plf 28IT20 20 12/8 368 11,688 7.91 1,478 967 383 20,275 9.60 2,112 1,408 500 28IT24 24 12/12 480 28IT28 16/12 528 32,076 11.09 2,892 1,897 550 28 28IT32 32 20/12 576 47,872 12.67 3,778 2,477 600 28IT36 36 24/12 624 68,101 14.31 4,759 3,140 650 767 736 93,503 15.83 5,907 3,869 28IT40 40 24/16 28IT44 44 28/16 784 124,437 17.43 7,139 4,683 817 28IT48 48 32/16 832 161,424 19.08 8,460 5,582 867 917 36/16 880 204.884 20.76 9,869 6.558 28IT52 52 22.48 11,354 7,614 967 28IT56 40/16 928 255,229 56 28IT60 60 44/16 976 312,866 24.23 12,912 8,747 1,017

1/2 in. diameter

low-relaxation strand

1. Check local area for availability of other sizes.


2. Safe loads shown include 50% superimposed dead load and 50% live load. 800 ps top tension has been allowed, therefore additional top reinforcement is required. 3. Safe loads can be significantly increased by use of structural composite topping.

Key 6,929 — Safe superimposed service load, plf 0.3 — Estimated camber at erection, in. 0.1 — Estimated long-time camber, in.

### Table of safe superimposed service load (plf) and cambers

| Desig- | No.    |       |      |      |      |      |      |      |             |             | Spar        | n, ft       |      |      |      |            |            |             |             |     |
|--------|--------|-------|------|------|------|------|------|------|-------------|-------------|-------------|-------------|------|------|------|------------|------------|-------------|-------------|-----|
| nation | Strand | e     | 16   | 18   | 20   | 22   | 24   | 26   | 28          | 30          | 32          | 34          | 36   | 38   | 40   | 42         | 44         | 46          | 48          | 5   |
|        |        |       | 6929 | 5402 | 4310 | 3502 | 2887 | 2409 | 2029        | 1723        | 1473        | 1265        | 1091 |      | -    |            | -          |             |             |     |
| 28IT20 | 9      | 5.82  | 0.3  | 0.3  | 0.4  | 0.4  | 0.5  | 0.6  | 0.6         | 0.7         | 0.7         | 0.8         | 0.8  |      |      |            |            |             |             |     |
|        |        |       | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.0         | 0.0         | 0.0         | -0.1        | -0.1 |      |      |            |            |             |             |     |
|        |        |       | 9714 | 7580 | 6054 | 4925 | 4066 | 3398 | 2868        | 2440        | 2090        | 1799        | 1556 | 1351 | 1175 | 1024       |            |             |             |     |
| 28IT24 | 11     | 6.77  | 0.2  | 0.3  | 0.3  | 0.4  | 0.4  | 0.5  | 0.6         | 0.6         | 0.7         | 0.7         | 0.7  | 0.8  | 0.8  | 0.8        |            |             |             |     |
|        |        |       | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1         | 0.1         | 0.1         | 0.0         | 0.0  | 0.0  | -0.1 | -0.2       |            |             |             |     |
|        |        |       |      |      | 8505 | 6951 | 5768 | 4848 | 4118        | 3529        | 3047        | 2648        | 2313 | 2030 | 1788 | 1579       | 1399       | 1242        | 1103        | 98  |
| 28IT28 | 13     | 8.44  |      |      | 0.3  | 0.4  | 0.5  | 0.5  | 0.6         | 0.7         | 0.7         | 0.8         | 0.9  | 0.9  | 1.0  | 1.0        | 1.1        | 1.1         | 1.1         | 1.  |
|        |        |       |      |      | 0.1  | 0.1  | 0.1  | 0.2  | 0.2         | 0.2         | 0.2         | 0.2         | 0.2  | 0.2  | 0.2  | 0.1        | 0.1        | 0.1         | 0.0         | -0. |
|        |        |       |      |      |      | 9202 | 7646 | 6435 | 5474        | 4698        | 4064        | 3538        | 3097 | 2724 | 2406 | 2132       | 1894       | 1687        | 1505        | 134 |
| 28IT32 | 15     | 9.17  |      |      |      | 0.3  | 0.4  | 0.4  | 0.5         | 0.5         | 0.6         | 0.6         | 0.7  | 0.7  | 0.8  | 0.8        | 0.9        | 0.9         | 0.9         | 0.  |
|        |        |       |      |      |      | 0.1  | 0.1  | 0.1  | 0.1         | 0.1         | 0.1         | 0.1         | 0.1  | 0.1  | 0.1  | 0.1        | 0.0        | 0.0         | 0.0         | -0. |
|        |        | -     |      |      |      |      |      | 8485 | 7236        | 6227        | 5402        | 4718        | 4145 | 3660 | 3246 | 2890       | 2581       | 2311<br>0.9 | 2075<br>0.9 | 186 |
| 28IT36 | 16     | 10.81 |      |      |      |      |      | 0.4  | 0.4         | 0.5         | 0.5         | 0.6         | 0.6  | 0.7  | 0.7  | 0.8<br>0.1 | 0.8<br>0.0 | 0.9         | 0.9         | -0. |
|        |        |       |      | -    |      | -    |      | 0.1  | 0.1         | 0.1         | 0.1         | 0.1         | 0.1  | 4361 | 3868 | 3444       | 3077       | 2756        | 2475        | 222 |
|        |        |       |      |      |      |      |      |      | 8615<br>0.4 | 7415<br>0.4 | 6433<br>0.5 | 5620<br>0.5 | 4938 | 4361 | 0.7  | 0.7        | 0.8        | 2/50        | 2475        | 0.  |
| 28IT40 | 19     | 11.28 |      |      |      |      |      |      | 0.4         | 0.4         | 0.5         | 0.5         | 0.0  | 0.0  | 0.1  | 0.1        | 0.0        | 0.0         | 0.1         | 0   |
|        |        |       |      |      |      |      |      |      | 0.1         | 9308        | 8092        | 7083        | 6239 | 5524 | 4913 | 4388       | 3932       | 3535        | 3186        | 287 |
| ORITAA | 00     | 10.00 |      |      |      |      |      |      |             | 0.4         | 0.5         | 0.5         | 0239 | 0.6  | 0.6  | 0.7        | 0.7        | 0.8         | 0.8         | 0.  |
| 28IT44 | 20     | 12.89 |      |      |      |      |      |      |             | 0.4         | 0.5         | 0.5         | 0.5  | 0.0  | 0.1  | 0.1        | 0.1        | 0.1         | 0.1         | 0.  |
|        |        |       |      |      |      |      |      |      |             | 0.1         | 9741        | 8539        | 7532 | 6680 | 5952 | 5326       | 4783       | 4310        | 3894        | 352 |
|        | 00     | 14.16 |      |      |      |      |      |      |             |             | 0.4         | 0.5         | 0.5  | 0.6  | 0.6  | 0.7        | 0.7        | 0.8         | 0.8         | 0.  |
| 28IT48 | 22     | 14.10 |      |      |      |      |      |      |             |             | 0.4         | 0.5         | 0.1  | 0.1  | 0.1  | 0.1        | 0.1        | 0.1         | 0.1         | 0.  |
|        |        |       |      |      |      |      |      |      |             |             | 0.1         | 0.1         | 8935 | 7934 | 7080 | 6345       | 5707       | 5151        | 4664        | 423 |
| OOITEO | 24     | 15.44 |      |      |      |      |      |      |             |             |             |             | 0.5  | 0.5  | 0.6  | 0.6        | 0.7        | 0.7         | 0.8         | 0.  |
| 28IT52 | 24     | 15.44 |      |      |      |      |      |      |             |             |             |             | 0.5  | 0.1  | 0.1  | 0.1        | 0.1        | 0.1         | 0.1         | 0.  |
|        |        |       |      | -    |      |      |      |      |             | -           |             | -           | 0.1  | 9284 | 8294 | 7442       | 6703       | 6059        | 5493        | 499 |
| 28IT56 | 26     | 16.74 |      |      |      |      |      |      |             |             |             |             |      | 0.5  | 0.6  | 0.6        | 0.7        | 0.7         | 0.8         | 0.  |
| 201100 | 20     | 10.74 |      |      |      |      |      |      |             |             |             |             |      | 0.1  | 0.1  | 0.1        | 0.1        | 0.1         | 0.1         | 0.  |
|        |        |       |      |      |      |      |      |      |             |             | 1           | -           | -    | 0.1  | 9590 | 8613       | 7766       | 7027        | 6379        | 580 |
| 281760 | 28     | 18.04 |      |      |      |      |      |      | 1 N         |             |             |             |      |      | 0.6  | 0.6        | 0.6        | 0.7         | 0.7         | 0.  |
| 201100 | 20     | 10.04 |      |      |      |      |      |      | en 5, •     |             |             |             |      |      | 0.1  | 0.2        | 0.2        | 0.2         | 0.2         | 0.  |

2 - 44



0.1 - Estimated long-time camber, in.

Table of safe superimposed service load (plf) and cambers

| Desig-         | No.    |       |      |                |      |      |            |      |      | 5    | Span, f        | t    |         |      |      |         |      |      |      |
|----------------|--------|-------|------|----------------|------|------|------------|------|------|------|----------------|------|---------|------|------|---------|------|------|------|
| nation         | Strand | e     | 18   | 20             | 22   | 24   | 26         | 28   | 30   | 32   | 34             | 36   | 38      | 40   | 42   | 44      | 46   | 48   | 50   |
|                |        |       | 8164 | 6525           | 5313 | 4391 | 3674       | 3104 | 2645 | 2269 | 1958           | 1697 | 1476    | 1287 | 1125 | 984     |      |      |      |
| 34IT20         | 14     | 9.48  | 0.4  | 0.5            | 0.6  | 0.7  | 0.8        | 0.9  | 1.0  | 1.0  | 1.1            | 1.2  | 1.2     | 1.3  | 1.3  | 1.3     |      |      |      |
|                |        |       | 0.1  | 0.2            | 0.2  | 0.2  | 0.2        | 0.2  | 0.3  | 0.3  | 0.3            | 0.2  | 0.2     | 0.2  | 0.1  | 0.0     |      |      |      |
|                |        |       |      | 9171           | 7478 | 6190 | 5187       | 4392 | 3750 | 3225 | 2790           | 2425 | 2116    | 1853 | 1626 | 1429    | 1258 | 1107 | 974  |
| 34IT24         | 17     | 7.32  | 1.5  | 0.4            | 0.5  | 0.6  | 0.6        | 0.7  | 0.8  | 0.9  | 0.9            | 1.0  | 1.1     | 1.1  | 1.2  | 1.2     | 1.2  | 1.2  | 1.2  |
|                |        |       |      | 0.1            | 0.2  | 0.2  | 0.2        | 0.2  | 0.2  | 0.2  | 0.2            | 0.2  | 0.2     | 0.2  | 0.2  | 0.1     | 0.1  | 0    | -0.  |
| and the second |        |       |      |                |      | 8675 | 7295       | 6200 | 5316 | 4593 | 3994           | 3492 | 3067    | 2704 | 2392 | 2121    | 1885 | 1678 | 149  |
| 34IT28         | 20     | 8.63  |      |                |      | 0.5  | 0.6        | 0.7  | 0.7  | 0.8  | 0.9            | 1.0  | 1.0     | 1.1  | 1.1  | 1.2     | 1.2  | 1.3  | 1.3  |
|                | -      |       |      | -              |      | 0.2  | 0.2        | 0.2  | 0.2  | 0.3  | 0.3            | 0.3  | 0.3     | 0.3  | 0.3  | 0.2     | 0.2  | 0.2  | 0.1  |
|                |        |       |      |                |      |      | 9743       | 8301 | 7138 | 6186 | 5397           | 4736 | 4177    | 3699 | 3288 | 2932    | 2621 | 2348 | 2107 |
| 34IT32         | 23     | 10.00 | 1    |                |      |      | 0.5        | 0.6  | 0.7  | 0.7  | 0.8            | 0.9  | 1.0     | 1.0  | 1.1  | 1.2     | 1.2  | 1.3  | 1.3  |
|                |        |       |      |                |      |      | 0.2        | 0.2  | 0.2  | 0.3  | 0.3            | 0.3  | 0.3     | 0.3  | 0.3  | 0.3     | 0.3  | 0.3  | 0.2  |
|                |        |       |      |                |      |      |            |      | 9477 | 8239 | 7207           | 6340 | 5605    | 4978 | 4439 | 3971    | 3563 | 3205 | 2892 |
| 34IT36         | 24     | 12.32 |      |                |      |      |            |      | 0.7  | 0.7  | 0.8            | 0.9  | 1.0     | 1.0  | 1.1  | 1.2     | 1.3  | 1.3  | 1.4  |
|                |        |       |      |                |      |      |            |      | 0.2  | 0.2  | 0.3            | 0.3  | 0.3     | 0.3  | 0.3  | 0.3     | 0.3  | 0.3  | 0.3  |
|                | 1.2    |       |      |                |      |      |            |      |      | 9771 | 8550           | 7527 | 6662    | 5923 | 5287 | 4735    | 4254 | 3832 | 3460 |
| 34IT40         | 30     | 12.30 |      |                |      |      |            |      |      | 0.6  | 0.7            | 0.8  | 0.8     | 0.9  | 1.0  | 1.0     | 1.1  | 1.2  | 1.2  |
|                |        |       |      | and the second |      |      |            |      |      | 0.3  | 0.3            | 0.3  | 0.3     | 0.3  | 0.3  | 0.4     | 0.4  | 0.4  | 0.4  |
|                |        |       |      |                |      |      |            |      |      |      |                | 9478 | 8406    | 7490 | 6702 | 6019    | 5423 | 4900 | 4439 |
| 34IT44         | 30     | 14.04 |      |                |      |      |            |      |      |      |                | 0.7  | 0.7     | 0.8  | 0.9  | 0.9     | 1.0  | 1.0  | 1.1  |
|                |        |       | _    |                |      |      |            |      | -    | -    |                | 0.2  | 0.2     | 0.2  | 0.2  | 0.2     | 0.2  | 0.2  | 0.2  |
|                |        |       |      |                |      |      |            |      |      |      |                |      |         | 9049 | 8110 | 7295    | 6585 | 5962 | 5412 |
| 34IT48         | 33     | 15.42 |      |                |      |      |            |      |      |      |                |      |         | 0.8  | 0.8  | 0.9     | 0.9  | 1.0  | 1.1  |
|                |        |       |      | 1              |      |      | 1.1.1.1.1. |      |      |      | -              |      | and the | 0.2  | 0.2  | 0.2     | 0.3  | 0.3  | 0.3  |
|                |        |       |      |                |      |      |            |      |      |      |                |      |         |      | 9637 | 8681    | 7848 | 7116 | 6470 |
| 34IT52         | 36     | 16.81 |      |                |      |      |            |      |      |      |                |      |         |      | 0.8  | 0.9     | 0.9  | 1.0  | 1.0  |
|                |        |       | -    |                |      |      | -          | 63   | _    |      |                |      |         |      | 0.3  | 0.3     | 0.3  | 0.3  | 0.3  |
|                |        |       |      |                |      |      |            |      |      |      |                |      |         |      |      |         | 9208 | 8360 | 7611 |
| 34IT56         | 39     | 18.21 |      |                |      |      |            |      |      |      |                |      |         |      |      |         | 0.9  | 0.9  | 1.0  |
|                |        |       |      |                |      |      |            |      |      |      | and the second | -    |         |      |      | 2 march | 0.3  | 0.3  | 0.3  |
|                |        |       |      |                |      |      |            |      |      |      |                |      |         |      |      |         |      | 9689 | 8831 |
| 341760         | 42     | 19.59 |      |                |      |      |            |      | .1.  |      |                |      |         |      |      |         |      | 0.8  | 0.9  |
|                |        |       |      |                |      |      |            |      |      |      |                |      |         |      |      |         |      | 0.2  | 0.2  |

#### PCI Design Handbook/Fifth Edition

2 - 45



Designation

40IT20

40IT24

40IT28

40IT32

40IT36

40IT40

40IT44

40IT48

40IT52

h in.

20

24

28

32

36

40

44

48

52

 $h_1/h_2$ 

in.

12/8

12/12

16/12

20/12

24/12

24/16

28/16

32/16

36/16

#### Normal Weight Concrete

St

in

1,805

2,603

3,534

4,622

5,859

7,215

8,743

10,415

12,233

wt

plf

633

800

900

1,000

1,100

1,267

1,367

1,467

1,567

S<sub>b</sub> in<sup>3</sup>

2.325

3,346

4,563

5,943

7,474

9,305

11,220

13,289

15,497

Уь in.

8.74

10.50

12.22

14.00

15.82

17.47

19.27

21.09

22.94

|       | h,             |  |
|-------|----------------|--|
|       | **1            |  |
|       | h <sub>2</sub> |  |
| 3'-4" |                |  |

| ) psi |  |  |
|-------|--|--|

$$f_{pu} = 270,000 \text{ psi}$$

low-relaxation strand

1/2 in. diameter

1. Check local area for availability of other sizes.

2. Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top tension has been allowed, therefore additional top reinforcement is required.

**Section Properties** 

l in4

20.321

35,136

55,765

83,200

118,237

162,564

216,215

280,266

355,503

A in<sup>2</sup>

608

768

864

960

1,056

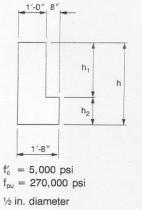
1,216

1,312

1,408

1,504

3. Safe loads can be significantly increased by use of structural composite topping.


Key 8,741 — Safe superimposed service load, plf 0.5 — Estimated camber at erection, in. 0.2 — Estimated long-time camber, in.

| Table of safe | superimposed | sonico load | (nlf) an | d aambara |
|---------------|--------------|-------------|----------|-----------|
|               |              |             |          |           |

| Desig-  | No.    |       |          |       |      |                |      |      |        | Spa  | n, ft |      |      |       | 18   |      |      |      |
|---------|--------|-------|----------|-------|------|----------------|------|------|--------|------|-------|------|------|-------|------|------|------|------|
| nation  | Strand | e     | 20       | 22    | 24   | 26             | 28   | 30   | 32     | 34   | 36    | 38   | 40   | 42    | 44   | 46   | 48   | 50   |
|         |        |       | 8741     | 7124  | 5895 | 4938           | 4179 | 3567 | 3066   | 2650 | 2302  | 2008 | 1756 | 1538  | 1349 | 1184 | 1039 |      |
| 40IT20  | 18     | 6.65  | 0.5      | 0.6   | 0.7  | 0.8            | 0.9  | 1.0  | 1.1    | 1.2  | 1.3   | 1.4  | 1.4  | 1.5   | 1.5  | 1.5  | 1.5  |      |
|         |        |       | 0.2      | 0.2   | 0.2  | 0.3            | 0.3  | 0.3  | 0.3    | 0.3  | 0.3   | 0.3  | 0.2  | 0.2   | 0.1  | 0.0  | 0.1  |      |
|         |        |       |          | 1.200 | 8313 | 6976           | 5916 | 5060 | 4360   | 3780 | 3293  | 2882 | 2530 | 2228  | 1966 | 1737 | 1536 | 135  |
| 400IT24 | 22     | 7.67  |          |       | 0.6  | 0.7            | 0.8  | 0.9  | 1.0    | 1.0  | 1.1   | 1.2  | 1.3  | 1.3   | 1.4  | 1.4  | 1.4  | 1.4  |
| -       |        |       |          |       | 0.2  | 0.2            | 0.3  | 0.3  | 0.3    | 0.3  | 0.3   | 0.3  | 0.3  | . 0.3 | 0.2  | 0.2  | 0.1  | 0.0  |
|         |        |       |          | 1     |      | 9787           | 8327 | 7149 | 6185   | 5386 | 4716  | 4149 | 3666 | 3249  | 2888 | 2573 | 2297 | 2053 |
| 40IT28  | 26     | 9.06  |          |       |      | 0.6            | 0.7  | 0.8  | 0.9    | 1.0  | 1.0   | 1,1  | 1.2  | 1.3   | 1.3  | 1.4  | 1.5  | 1.5  |
|         |        |       |          |       |      | 0.2            | 0.3  | 0.3  | 0.3    | 0.3  | 0.3   | 0.3  | 0.3  | 0.3   | 0.3  | 0.3  | 0.3  | 0.2  |
|         |        |       |          |       |      |                | 1    | 9577 | 8308   | 7256 | 6375  | 5629 | 4992 | 4444  | 3969 | 3555 | 3191 | 2870 |
| 40IT32  | 30     | 10.50 | 1        |       |      |                |      | 0.7  | 0.8    | 0.9  | 1.0   | 1.1  | 1.1  | 1.2   | 1.3  | 1.4  | 1.4  | 1.5  |
|         |        |       |          |       |      |                |      | 0.3  | 0.3    | 0.3  | 0.3   | 0.4  | 0.4  | 0.4   | 0.4  | 0.4  | 0.4  | 0.3  |
|         |        |       |          |       |      |                |      |      |        | 9610 | 8453  | 7474 | 6638 | 5918  | 5295 | 4751 | 4276 | 3860 |
| 40IT36  | 32     | 12.32 | 10.5.2.5 |       |      |                |      |      |        | 0.8  | 0.9   | 1.0  | 1.0  | 1.1   | 1.2  | 1.3  | 1.3  | 1.4  |
|         |        |       |          |       |      | _              |      | -    |        | 0.3  | 0.3   | 0.3  | 0.3  | 0.3   | 0.3  | 0.3  | 0.3  | 0.3  |
|         |        |       |          |       |      |                |      |      |        |      | 1     | 8963 | 7977 | 7129  | 6394 | 5753 | 5190 | 4694 |
| 40IT40  | 38     | 12.92 |          |       |      |                |      |      |        |      |       | 0.9  | 1.0  | 1.0   | 1.1  | 1.2  | 1.2  | 1.3  |
|         | -      |       |          |       |      |                |      | 1    |        |      |       | 0.3  | 0.3  | 0.4   | 0.4  | 0.4  | 0.4  | 0.4  |
|         |        |       |          |       |      |                |      |      |        |      |       |      |      | 9016  | 8106 | 7311 | 6614 | 5999 |
| 40IT44  | 40     | 14.73 |          |       |      |                |      |      |        |      |       |      |      | 1.0   | 1.0  | 1.1  | 1.2  | 1.2  |
|         | -      |       |          |       |      |                |      |      |        | -    |       |      |      | 0.3   | 0.3  | 0.3  | 0.3  | 0.3  |
|         |        |       |          |       |      |                |      |      |        |      |       |      |      |       | 9808 | 8861 | 8030 | 7296 |
| 40IT48  | 44     | 16.17 |          |       |      |                |      |      |        |      |       |      |      |       | 1.0  | 1.0  | 1.1  | 1.2  |
|         |        |       | 1000     |       |      |                |      |      | -      |      |       |      |      |       | 0.3  | 0.3  | 0.3  | 0.4  |
| ADITEO  |        | 17.00 |          |       |      |                |      |      |        |      |       |      |      |       |      |      | 9537 | 8666 |
| 40IT52  | 48     | 17.62 |          |       |      |                |      |      |        |      |       |      |      |       |      |      | 1.0  | 1.1  |
|         |        |       |          |       |      | and the second |      |      | Sec. 1 |      |       |      |      |       |      |      | 0.3  | 0.3  |

2 - 46

#### L-BEAMS



low-relaxation strand

Normal Weight Concrete

|             |          | S                                     | ection               | Properti             | es                    |                                   |                                   |           |
|-------------|----------|---------------------------------------|----------------------|----------------------|-----------------------|-----------------------------------|-----------------------------------|-----------|
| Designation | h<br>in. | h <sub>1</sub> /h <sub>2</sub><br>in. | A<br>in <sup>2</sup> | l<br>in <sup>4</sup> | у <sub>ь</sub><br>in. | S <sub>b</sub><br>in <sup>3</sup> | S <sub>t</sub><br>in <sup>3</sup> | wt<br>plf |
| 20LB20      | 20       | 12/8                                  | 304                  | 10,160               | 8.74                  | 1,163                             | 902                               | 317       |
| 20LB24      | 24       | 12/12                                 | 384                  | 17,568               | 10.50                 | 1,673                             | 1,301                             | 400       |
| 20LB28      | 28       | 16/12                                 | 432                  | 27,883               | 12.22                 | 2,282                             | 1,767                             | 450       |
| 20LB32      | 32       | 20/12                                 | 480                  | 41,600               | 14.00                 | 2,971                             | 2,311                             | 500       |
| 20LB36      | 36       | 24/12                                 | 528                  | 59,119               | 15.82                 | 3,737                             | 2,930                             | 550       |
| 20LB40      | 40       | 24/16                                 | 608                  | 81,282               | 17.47                 | 4,653                             | 3,608                             | 633       |
| 20LB44      | 44       | 28/16                                 | 656                  | 108,107              | 19.27                 | 5,610                             | 4,372                             | 683       |
| 20LB48      | 48       | 32/16                                 | 704                  | 140,133              | 21.09                 | 6,645                             | 5,208                             | 733       |
| 20LB52      | 52       | 36/16                                 | 752                  | 177,752              | 22.94                 | 7,749                             | 6,117                             | 783       |
| 20LB56      | 56       | 40/16                                 | 800                  | 221,355              | 24.80                 | 8,926                             | 7,095                             | 833       |
| 20LB60      | 60       | 44/16                                 | 848                  | 271,332              | 26.68                 | 10,170                            | 8,143                             | 883       |

1. Check local area for availability of other sizes.

Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top tension has been allowed, therefore additional top reinforcement is required.

3. Safe loads can be significantly increased by use of structural composite topping.

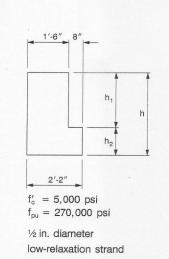

Key 6,471 — Safe superimposed service load, plf 0.3 — Estimated camber at erection, in. 0.1 — Estimated long-time camber, in.

Table of safe superimposed service load (plf) and cambers

| Desig- | No.    | e     |      |      |      |             |      | Therese     |             |      | Spa  | n, ft |            |         |      |      |      |             |             |             |
|--------|--------|-------|------|------|------|-------------|------|-------------|-------------|------|------|-------|------------|---------|------|------|------|-------------|-------------|-------------|
| nation | Strand |       | 16   | 18   | 20   | 22          | 24   | 26          | 28          | 30   | 32   | 34    | 36         | 38      | 40   | 42   | 44   | 46          | 48          | 50          |
|        |        |       | 6471 | 5053 | 4038 | 3288        | 2717 | 2273        | 1920        | 1636 | 1403 | 1210  | 1049       | 1 State |      |      |      |             |             |             |
| 20LB20 | 9      | 6.00  | 0.3  | 0.4  | 0.5  | 0.5         | 0.6  | 0.7         | 0.8         | 0.9  | 1.0  | 1.0   | 1.1<br>0.1 |         |      |      |      |             |             |             |
|        |        |       | 9518 | 7444 | 5961 | 4864        | 4029 | 3380        | 2865        | 2449 | 2108 | 1826  | 1590       | 1390    | 1010 | 1070 |      |             |             |             |
| 20LB24 | 10     | 7.37  | 0.3  | 0.3  | 0.4  | 0.4         | 4029 | 0.6         | 2000        | 2449 | 2108 | 0.9   | 0.9        | 1.0     | 1219 | 1072 |      |             |             |             |
|        |        |       | 0.1  | 0.1  | 0.1  | 0.1         | 0.1  | 0.1         | 0.1         | 0.1  | 0.1  | 0.1   | 0.1        | 0.1     | 0.0  | 0.0  |      |             |             |             |
|        |        |       |      |      | 8193 | 6701        | 5566 | 4682        | 3981        | 3416 | 2953 | 2569  | 2248       | 1976    | 1744 | 1544 | 1370 | 1219        | 1087        | 970         |
| 20LB28 | 12     | 8.56  |      |      | 0.3  | 0.4         | 0.5  | 0.5         | 0.6         | 0.7  | 0.8  | 0.8   | 0.9        | 1.0     | 1.0  | 1.1  | 1.1  | 1.1         | 1.2         | 1.2         |
|        |        |       |      |      | 0.1  | 0.1         | 0.1  | 0.1         | 0.2         | 0.2  | 0.2  | 0.2   | 0.2        | , 0.1   | 0.1  | 0.1  | 0.1  | 0.0         | 0.0         | -0.1        |
| 20LB32 | 14     | 0.00  |      |      |      | 8820<br>0.4 | 7339 | 6187<br>0.5 | 5272<br>0.6 | 4534 | 3931 | 3430  | 3011       | 2656    | 2353 | 2092 | 1866 | 1669        | 1496        | 1343        |
| 201832 | 14     | 9.80  |      |      |      | 0.4         | 0.4  | 0.5         | 0.6         | 0.6  | 0.7  | 0.8   | 0.8        | 0.9     | 1.0  | 1.0  | 1.1  | 1.1<br>0.1  | 1.2         | 1.2         |
|        |        |       |      |      |      | 0.1         | 9335 | 7881        | 6727        | 5796 | 5034 | 4402  | 3873       | 3425    | 3043 | 2714 | 2428 | 2180        | 0.1         | 0.1         |
| 20LB36 | 16     | 11.05 |      |      |      |             | 0.4  | 0.5         | 0.5         | 0.6  | 0.7  | 0.7   | 0.8        | 0.9     | 0.9  | 1.0  | 1.1  | 1.1         | 1.2         | 1/08        |
|        |        |       |      |      |      |             | 0.1  | 0.2         | 0.2         | 0.2  | 0.2  | 0.2   | 0.2        | 0.2     | 0.2  | 0.2  | 6.2  | 0.2         | 0.2         | 0.2         |
| -      |        |       |      |      |      |             |      | 9663        | 8253        | 7116 | 6185 | 5413  | 4767       | 4220    | 3752 | 3350 | 3002 | 2698        | 2431        | 2196        |
| 20LB40 | 18     | 11.99 |      |      |      |             |      | 0.4         | 0.5         | 0.5  | 0.6  | 0.6   | 0.7        | 0.8     | 0.8  | 0.9  | 1.0  | 1.0         | 1.1         | 1.1         |
|        |        |       |      |      |      |             |      | 0.1         | 0.2         | 0.2  | 0.2  | 0.2   | 0.2        | 0.2     | 0.2  | 0.2  | 0.2  | 0.2         | 0.2         | 0.2         |
| 20LB44 | 19     | 13.61 |      |      |      |             |      |             |             | 8866 | 7718 | 6766  | 5969       | 5294    | 4717 | 4221 | 3791 | 3416        | 3087        | 2797        |
| 201044 | 19     | 13.01 |      |      |      |             |      |             |             | 0.5  | 0.5  | 0.6   | 0.7        | 0.7     | 0.8  | 0.8  | 0.9  | 0.9         | 1.0<br>0.2  | 1.0         |
|        |        | -     |      |      |      |             |      |             |             |      | 9231 | 8101  | 7155       | 6353    | 5669 | 5081 | 4570 | 4125        | 3735        | 0.2         |
| 20LB48 | 21     | 14.86 |      |      |      |             |      |             |             |      | 0.5  | 0.6   | 0.6        | 0.7     | 0.7  | 0.8  | 4570 | 4125        | 1.0         | 3390        |
|        |        |       |      |      |      |             |      |             |             |      | 0.2  | 0.2   | 0.2        | 0.2     | 0.2  | 0.2  | 0.2  | 0.2         | 0.2         | 0.2         |
|        |        |       |      |      |      |             |      |             |             |      |      | 9545  | 8438       | 7500    | 6700 | 6011 | 5415 | 4894        | 4437        | 4033        |
| 20LB52 | 23     | 16.12 |      |      |      |             |      |             |             |      |      | 0.5   | 0.6        | 0.6     | 0.7  | 0.8  | 0.8  | 0.9         | 0.9         | 1.0         |
|        |        |       |      |      |      |             |      |             |             |      |      | 0.2   | 0.2        | 0.2     | 0.2  | 0.2  | 0.2  | 0.2         | 0.2         | 0.2         |
| 20LB56 | 05     | 17.07 |      |      |      |             |      |             |             |      |      |       |            | 8733    | 7808 | 7012 | 6323 | 5721        | 5192        | 4726        |
| ZULDOO | 25     | 17.37 |      |      |      |             |      |             |             |      |      |       | 0.6        | 0.6     | 0.7  | 0.7  | 0.8  | 0.8         | 0.9         | 0.9         |
| /      |        |       |      |      | -    |             | -    | 0           |             | -    |      |       | 0.2        | 0.2     | 0.2  | 0.2  | 0.2  | 0.2         | 0.3         | 0.3         |
| 20LB60 | 27     | 18.63 |      |      |      |             |      |             |             |      |      |       |            |         | 0.6  | 0.7  | 7296 | 6608<br>0.8 | 6004<br>0.9 | 5470<br>0.9 |
|        |        | 10.00 |      |      |      |             |      |             |             |      |      |       |            |         | 0.2  | 0.2  | 0.2  | 0.8         | 0.9         | 0.9         |

2-42





#### L-BEAMS

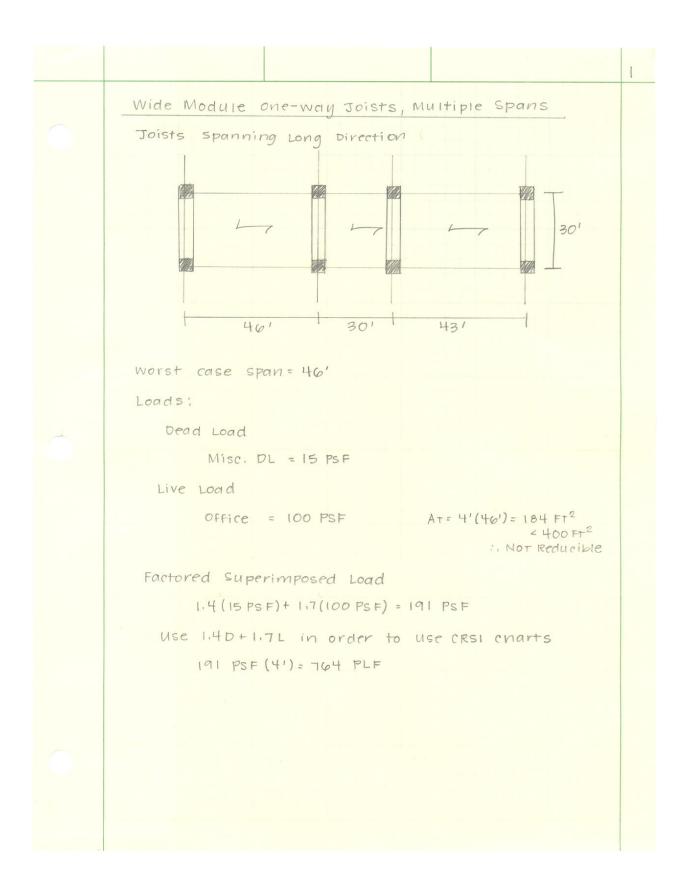
Normal Weight Concrete

|             |          | S                                     | Section              | Propert   | ties                  |                                   |                                   |           |
|-------------|----------|---------------------------------------|----------------------|-----------|-----------------------|-----------------------------------|-----------------------------------|-----------|
| Designation | h<br>in. | h <sub>1</sub> /h <sub>2</sub><br>in. | A<br>in <sup>2</sup> | l<br>in.4 | у <sub>ь</sub><br>in. | S <sub>b</sub><br>in <sup>3</sup> | S <sub>t</sub><br>in <sup>3</sup> | wt<br>plf |
| 26LB20      | 20       | 12/8                                  | 424                  | 14,298    | 9.09                  | 1,573                             | 1,311                             | 442       |
| 26LB24      | 24       | 12/12                                 | 528                  | 24,716    | 10.91                 | 2,265                             | 1,888                             | 550       |
| 26LB28      | 28       | 16/12                                 | 600                  | 39,241    | 12.72                 | 3,085                             | 2,568                             | 625       |
| 26LB32      | 32       | 20/12                                 | 672                  | 58,533    | 14.57                 | 4,017                             | 3,358                             | 700       |
| 26LB36      | 36       | 24/12                                 | 744                  | 83,176    | 16.45                 | 5,056                             | 4,255                             | 775       |
| 26LB40      | 40       | 24/16                                 | 848                  | 114,381   | 18.19                 | 6,288                             | 5,244                             | 883       |
| 26LB44      | 44       | 28/16                                 | 920                  | 152,104   | 20.05                 | 7,586                             | 6,351                             | 958       |
| 26LB48      | 48       | 32/16                                 | 992                  | 197,159   | 21.94                 | 8,986                             | 7,566                             | 1,033     |
| 26LB52      | 52       | 36/16                                 | 1,064                | 250,126   | 23.83                 | 10,496                            | 8,879                             | 1,108     |
| 26LB56      | 56       | 40/16                                 | 1,136                | 311,586   | 25.75                 | 12,100                            | 10,300                            | 1,183     |
| 26LB60      | 60       | 44/16                                 | 1,208                | 382,118   | 27.67                 | 13,810                            | 11,819                            | 1,258     |

1. Check local area for availability of other sizes.

2. Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top tension has been allowed, therefore additional top reinforcement is required.

3. Safe loads can be significantly increased by use of structural composite topping.


Key 9,737 — Safe superimposed service load, plf 0.4 — Estimated čamber at erection, in. 0.2 — Estimated long-time camber, in.

| Table of safe | superimposed | service | load | (plf) | and | cambers |  |
|---------------|--------------|---------|------|-------|-----|---------|--|
|---------------|--------------|---------|------|-------|-----|---------|--|

| Desig- | No.    | e     |      |      |      |      |      |         |      |      | Spa  | n, ft |       |      |      |      |             |             |            |        |
|--------|--------|-------|------|------|------|------|------|---------|------|------|------|-------|-------|------|------|------|-------------|-------------|------------|--------|
| nation | Strand | e     | 16   | 18   | 20   | 22   | 24   | 26      | 28   | 30   | 32   | 34    | 36    | 38   | 40   | 42   | 44          | 46          | 48         | 5      |
|        |        |       | 9737 | 7609 | 6088 | 4962 | 4106 | 3439    | 2911 | 2484 | 2135 | 1846  | 1603  | 1398 | 1223 | 1072 |             |             |            |        |
| 26LB20 | 15     | 6.35  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9     | 1.0  | 1.1  | 1.3  | 1.4   | 1.5   | 1.6  | 1.7  | 1.7  |             |             |            |        |
|        |        |       | 0.2  | 0.2  | 0.3  | 0.3  | 0.4  | 0.4     | 0.5  | 0.5  | 0.5  | 0.6   | 0.6   | 0.6  | 0.6  | 0.6  |             |             |            |        |
|        |        |       |      |      | 8987 | 7341 | 6089 | 5115    | 4342 | 3718 | 3208 | 2785  | 2430  | 2130 | 1874 | 1654 | 1463        | 1296        | 1150       | 10     |
| 26LB24 | 15     | 7.78  |      |      | 0.4  | 0.5  | 0.6  | 0.7     | 0.8  | 0.9  | 0.9  | 1.0   | 1.1   | 1.2  | 1.2  | 1.3  | 1.3         | 1.4         | 1.4        |        |
|        |        |       |      |      | 0.1  | 0.2  | 0.2  | 0.2     | 0.2  | 0.2  | 0.2  | 0.2   | 0.2   | 0.2  | 0.2  | 0.1  | 0.1         | 0.0         | 0.0        |        |
|        |        |       |      |      |      |      | 8394 | 7069    | 6017 | 5169 | 4474 | 3899  | 3417  | 3009 | 2660 | 2361 | 2101        | 1874        | 1675       | 14     |
| 26LB28 | 18     | 9.06  |      |      |      |      | 0.5  | 0.6     | 0.7  | 0.8  | 0.9  | 0.9   | 1.0   | 1.1  | 1.2  | 1.3  | 1.3         | 1.4         | 0.4        |        |
|        |        |       | -    |      |      |      | 0.2  | 0.2     | 0.2  | 0.2  | 0.2  | 0.3   | 0.3   | 0.3  | 0.3  | 0.2  | 0.2         | 0.2         | 0.2        |        |
| 26LB32 |        | 10.07 |      |      |      |      |      | 9325    | 7953 | 6847 | 5941 | 5191  | 4562  | 4029 | 3575 | 3184 | 2845        | 2549        | 2289       |        |
| ZOLBJZ | 21     | 10.37 |      |      |      |      |      | 0.6     | 0.6  | 0.7  | 0.8  | 0.9   | 1.0   | 1.0  | 1.1  | 1.2  | 0.3         | 1.3         | 1.4        |        |
|        |        |       |      |      |      |      |      | 0.2     | 0.2  | 0.2  | 0.3  | 0.3   | 0.3   | 0.3  | 0.3  | 0.3  | 0.3         | 0.3         | 0.3        |        |
| 26LB36 | 24     | 11.68 |      |      |      |      |      |         |      | 8739 | 7596 | 6648  | 5855  | 5183 | 4609 | 4116 | 3688        | 3314        | 2987       | 26     |
| 201030 | 24     | 11.08 |      |      |      |      |      |         |      | 0.6  | 0.7  | 0.8   | 0.9   | 1.0  | 1.0  | 1.1  | 1.2         | 1.3         | 1.3        |        |
|        |        |       |      |      |      |      |      | - 2.15- | -    | 0.2  | 0.3  | 0.3   | 0.3   | 0.3  | 0.3  | 0.3  | 0.3         | 0.3         | 0.3        |        |
| 26LB40 | 27     | 12.71 |      |      |      |      |      |         |      |      | 9338 | 8180  | 7210  | 6390 | 5689 | 5086 | 4563        | 4107        | 3707       | 33     |
| LOLD40 | 21     | 12./1 |      |      |      |      |      |         |      |      | 0.7  | 0.7   | 0.8   | 0.9  | 0.9  | 1.0  | 1.1         | 1.2         | 1.2        |        |
|        |        |       |      |      |      |      | _    |         |      |      | 0.2  | 0.3   | 0.3   | 0.3  | 0.3  | 0.3  | 0.3         | 0.3         | 0.3        | (      |
| 26LB44 | 28     | 14.39 |      |      |      |      |      |         |      |      |      |       | 9013  | 8001 | 7136 | 6392 | 5747        | 5185        | 4684       | 42     |
| COLD44 | 20     | 14.39 |      |      |      |      |      |         |      |      |      |       | 0.7   | 0.8  | 0.9  | 0.9  | 1.0         | 1.1         | 1.1        | 1      |
|        |        |       |      | -    |      |      | -    |         |      |      |      |       | 0.2   | 0.2  | 0.2  | 0.3  | 0.3         | 0.3         | 0.3        | (      |
| 26LB48 | 32     | 15.71 |      |      |      |      |      |         |      |      |      |       |       |      | 8564 | 7681 | 6916        | 6248        | 5662       | 51     |
| COLD40 | 32     | 15./1 |      |      |      |      |      |         |      |      |      |       |       | 0.8  | 0.8  | 0.9  | 1.0         | 1.0         | 1.1        | 1      |
|        |        |       |      |      |      |      |      |         |      |      |      | -     |       | 0.3  | 0.3  | 0.3  | 0.3         | 0.3         | 0.3        | C      |
| 26LB52 | 35     | 17.01 |      |      |      |      |      |         |      |      |      |       |       |      |      | 9077 | 8182        | 7401        | 6715       | 61     |
| OLDUZ  | 55     | 17.01 |      |      |      |      |      |         |      |      |      |       |       |      |      | 0.9  | 0.9         | 1.0         | 1.1        | 1      |
|        |        |       |      |      |      |      | -    |         |      |      |      |       |       |      |      | 0.3  | 0.3         | 0.3         | 0.4        | 0      |
| 26LB56 | 37     | 18.32 |      |      |      |      |      |         |      |      |      |       |       |      |      |      | 9544<br>0.9 | 8641        | 7849       | 71     |
|        |        | 10.02 |      |      |      |      |      |         |      |      |      |       |       |      |      |      | 0.9         | 0.9<br>0.3  | 1.0        | 1      |
|        |        |       |      |      |      | -    | -    |         | -    |      |      | -     | 21212 | -    |      | -    |             | 100 C       | 0.3        | 0      |
| 26LB60 | 38     | 19.62 |      |      |      |      |      |         |      |      |      |       |       |      |      |      |             | 9972<br>0.8 |            | 82     |
|        |        |       |      |      |      |      |      |         |      |      |      |       |       |      |      |      |             | 0.8         | 0.9<br>0.3 | 1<br>0 |

2-43

Wide Module One-Way Joists, Multiple Spans with CIP Framing System



## Wide Module One-Way Joists Spanning the Long Direction

| Option | Form<br>Widths<br>(IN) | Rib<br>Widths<br>(IN) | C-C<br>Width<br>(IN) | Rib<br>Depth<br>(IN) | Slab<br>Depth<br>(IN) | End<br>Span<br>Capacity<br>(PLF) | Interior<br>Span<br>Capacity<br>(PLF) | Self<br>Weight<br>(PLF) |
|--------|------------------------|-----------------------|----------------------|----------------------|-----------------------|----------------------------------|---------------------------------------|-------------------------|
| 1      | 40                     | 8                     | 48                   | 24                   | 4.5                   | 873                              | 926                                   | 475                     |
| 2      | 40                     | 9                     | 49                   | 24                   | 4.5                   | 987                              | 1066                                  | 505                     |
| 3      | 40                     | 10                    | 50                   | 24                   | 4.5                   | 791                              | 844                                   | 534                     |
| 4      | 53                     | 8                     | 61                   | 24                   | 4.5                   | 794                              | 845                                   | 536                     |
| 5      | 53                     | 9                     | 62                   | 24                   | 4.5                   | 908                              | 985                                   | 566                     |
| 6      | 53                     | 10                    | 63                   | 24                   | 4.5                   | 883                              | 1110                                  | 595                     |
| 7      | 66                     | 9                     | 75                   | 24                   | 4.5                   | 827                              | 903                                   | 627                     |

Possible Joist Systems Take from CRSI

Selection:  $40^{\circ}$  Forms + 8" Ribs @ 48" o.c. 24" Deep Rib + 4.5 "Top Slab = 28.5" Total Depth f'c = 4,000 psi fy = 60,000 psi

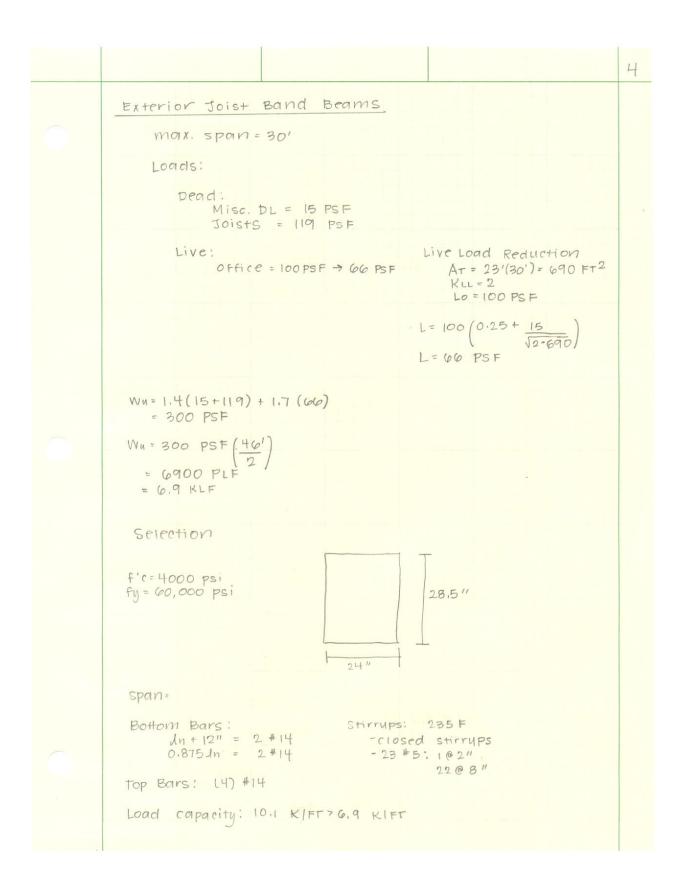
End Span: **764 PLF < 873 PLF** ∴ **OK** 

Top Bars: #7 @ 9" Bottom Bars: 1 - #10 and 1-#10 Stirrups: #3 @ 13" for 204"

Interior Span: 764 PLF < 926 PLF : OK

Top Bars: #6 @ 7" Bottom Bars: 1 - #8 and 1-#9 Stirrups: #3 @ 13" for 167"

This wide-module one-way joist system was selected because it was the lightest design and because it had a modular width of exactly 4'. All of the possible systems had the same total depth.

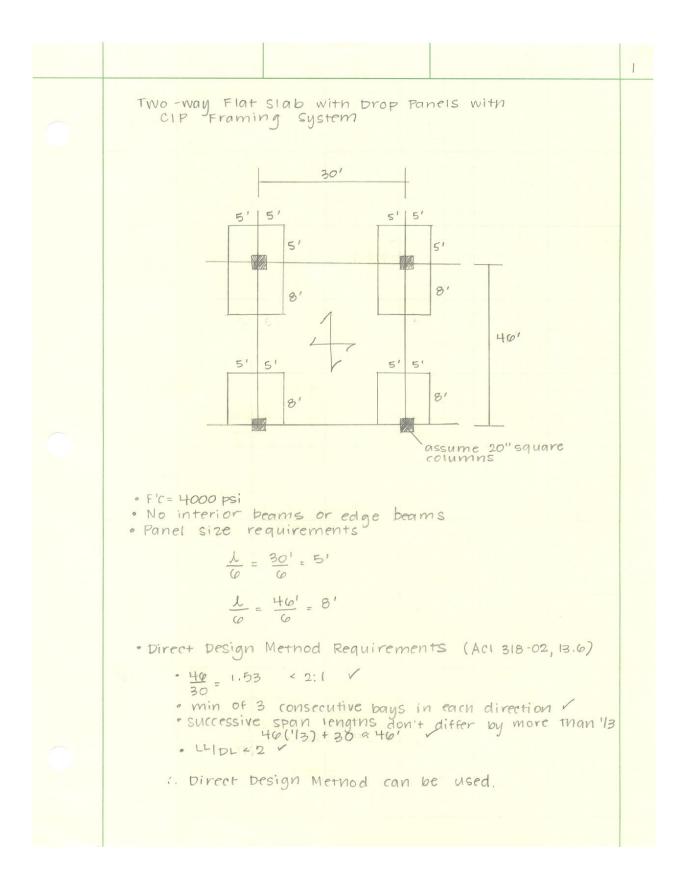

### Interior Beam Selection:

24" x 28.5" Top: (5) #14 Bottom: (2) #14 Stirrups (Closed): (16) #5, 1@2", 25@7" 12.5 PLF > 10.83 PLF ∴ **OK** 

#### **Exterior Beam Selection:**

24" x 28.5" Top: (4) #14 Bottom: (2) #14 Stirrups (Closed): (23) #5, 1@2", 22@8" 10.1 PLF > 6.9 PSF  $\therefore$  **OK** 

```
3
 Interior Joist Band Beams
  max, span = 30'
 Loads:
     Pead:
         Misc. DL = 15 PSF (
          Joists = 119 PSF
                                         Live Load Reduction
                                            AT = 38' (30') = 1140 FT2
    Live:
         Office = 100 PSF 9 57 PSF
                                             KLL = 2
                                             Lo = 100 PSF
    Wu= 1.4(15+119) + 1.7(57)
       = 285 PSF
                                           L = 100 \left( 0.25 + \frac{15}{\sqrt{2.1140}} \right)
     WH = 285 PSF (46'+30'
                                            L=57 PSF
        = 10,830
                    PLF
        = 10.83 KLF
       d= 28.5' to match total joist depth
 Selection:
f'c= 4000 psi
                                  28.5"
fy = 60,000 psi
                         24"
  span = 30'
   Bottom Bars:
             l_n + 12'' = (2) \# 14
             0.875 dn = (1) # 14
   Top Bars: (5) # 14
   load capacity = 12.5 KIFT > 10.83 KIFT .. OK
    Stirrups: 205E closed stirrups
20-#5: 102"
2507"
```




| 4,000 psi<br>60.000 psi                                                                      | Int.          | Span           | Coeff. | (2)         |                | 4.399                        | 4.894                    | 5.430              | 6000                       | 6.633                     | 7.304                     | 8.025             | 8.798                    | 9.625          | 10.510                               | 11.454                   | 12.460                    | 13.532                        |                                            |                                                          |                   |                   |                                         |                                   |          | and a                                                        | . à                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------|---------------|----------------|--------|-------------|----------------|------------------------------|--------------------------|--------------------|----------------------------|---------------------------|---------------------------|-------------------|--------------------------|----------------|--------------------------------------|--------------------------|---------------------------|-------------------------------|--------------------------------------------|----------------------------------------------------------|-------------------|-------------------|-----------------------------------------|-----------------------------------|----------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = 4,000  psi<br>= 60,000 psi                                                                 | 6#            | 10.0           | 2# 9   |             | 1.4            | 3101                         | 2903                     | 2720               | #5-182<br>2551             | 2394                      | 2248                      | 2112              | #4-193<br>1986           | #4-196<br>1867 | #4-199                               | #4-202                   | #4-204                    | #4-207<br>1464<br>#4-209      |                                            | 4.90                                                     | 26.44             | .374              | 2.79                                    | .913<br>26.45                     | .334     | Contraction of the second                                    | l spans,                                                                                                                                                                                                                                                                                                                                    |
| <i>f</i> , <i>f</i>                                                                          | 00<br>##      | 9.5            | 1# 8   | 16.         | INTERIOR SPAN  | 2543<br>#4-166               | 2374                     |                    |                            | 1940<br>1940              | 1815                      | 1699              |                          |                |                                      |                          |                           |                               |                                            |                                                          | 26.50             |                   | 2.37                                    | 775                               |          |                                                              | for end<br>rom fao                                                                                                                                                                                                                                                                                                                          |
| epth<br>D (PI F)                                                                             | 2#            | 9.0            | 1# 8   | .91         | ITERIO         | 2033                         | 1891                     | 1759               | #3-140 #                   | 1524                      | 1419                      | 1322              | #3-164 #                 | #3-166 #       | #3-167 #<br>1066                     | #3-169 #                 | #3-170 #3-171<br>921 1224 | #3-171 # 855 # #3-172 #       | 1                                          |                                                          | 26.56             |                   |                                         | .650                              |          | ('NI                                                         | n/18.5                                                                                                                                                                                                                                                                                                                                      |
| 6C.<br>lotal D.<br>LOAF                                                                      | 9#            | 8.0            | 2. #2  | 16.         | 4              | 1560                         |                          |                    |                            | 1139                      |                           | 126               |                          | #3-145 3       | 760                                  | 5-140 /                  | 3-146 #                   | #3-146 #<br>586<br>#3-146 #   | 32 CF/                                     | 2.69                                                     |                   |                   | 1.64                                    | .535                              |          | NCE (                                                        | less ≥ (                                                                                                                                                                                                                                                                                                                                    |
| Deep Rib + 4.5 Top Slab = 28.5 Total D<br>RED USABLE SUPERIMPOSED LOAD                       | #2            | C.B.           | 5#2    | 16          |                | 716                          |                          | 574 *              | 511 511 1                  | 452 452 4                 | 397 #                     | 347               | #3- /0 #3-144<br>299 896 | #3-73 #<br>255 | 214 = 214                            | #3- 0/ #3-140<br>175 698 | #3- 64 #                  | #3-61 #<br>104<br>#3-57 #     | RETE .8                                    | 1.60                                                     | 26.69             |                   | 1.02                                    |                                   |          | DISTA                                                        | e (thickn<br>stirrupe                                                                                                                                                                                                                                                                                                                       |
| 24" Deep Rib + 4.5" Top Slab = 28.5" Total Depth<br>FACTORED USABLE SUPERIMPOSED LOAD (PI F) | End           | Span           | Coeff. | (2)         |                | 7.149                        | 7.953                    | 8.824              | 9.765                      | 10.778                    | 11.869                    | 13.040            | 14.296                   | 15.641         | 17.078                               | 18.613                   | 20.248                    | 21.989                        | PROPERTIES FOR DESIGN (CONCRETE .82 CF/SF) |                                                          |                   |                   |                                         |                                   |          | CING                                                         | ntal line<br>er which                                                                                                                                                                                                                                                                                                                       |
| 5" Top<br>E SUP                                                                              | 8#            | -              |        |             |                | 1911<br>#4-185               | 1775                     | 1649               | 1533<br>1533<br>14 10A     |                           | _                         |                   |                          |                |                                      | 1000                     | 11.000                    | #3-209<br>786 2<br>#3-211     | IGN (C                                     | 3.52                                                     | 26.50             | .297              | 2.79                                    | .913                              | 334      | UT SPA                                                       | e horizo<br>ince ove                                                                                                                                                                                                                                                                                                                        |
| ib + 4.<br>SABL                                                                              | 2#            | 0.01           |        | 2.37        | SPAN           | 1527<br>#3-155 #             | 1411 #3-163 #            | 1304               | 1205 #<br>1205 #           | 1113 #                    | 1027                      | 947 #3.182 #      |                          |                | 738 105 104 17                       | 678                      | 621 #                     | #3-188 #5<br>567<br>#3-188 #3 | 3 DES                                      | 2.94                                                     |                   | .262              | 2.37                                    |                                   | _        | VSTAN                                                        | 8-3.<br>ed abovi<br>c. Dista                                                                                                                                                                                                                                                                                                                |
| Deep R<br>RED U                                                                              | 9#            | -              | -      | 2.01        | END SPAN       | 1177<br>#3-154 #:            | 1079 #3-155 #            | 988                | # 3-15/ #<br>905<br>#3-158 | 827<br>3-158 #            | 755 1027<br>#3-159 #3-180 | 688 #3.160 #1     | 625                      | #3-1bU #0      | 512 738<br>512 738<br>143 160 49 106 | 460                      | #3-100 #3-18/<br>412 621  | #3-160 #3<br>367<br>#3-160 #3 | ES FOI                                     | 2.40                                                     | -                 | .226              | 1.99                                    | -                                 |          | N. COI                                                       | e Table :<br>require<br>K in. c                                                                                                                                                                                                                                                                                                             |
| 24" I<br>ACTO                                                                                | # 9           | -              |        | 1.61~       |                |                              |                          |                    |                            | 562 #<br>#3-132 #         | 503<br>#3-132 #           | 447               |                          | 347            | 301 #*                               | 259                      | #3-120 #:<br>219          | #3-124 #5<br>182<br>#3-122 #6 | PERTIE                                     | 1.96                                                     |                   | .193              | 1.64                                    | 14                                | 209      | T 13 II                                                      | n is not<br>ace at )                                                                                                                                                                                                                                                                                                                        |
|                                                                                              | #5            | -              |        | 1.02        |                | 271<br>#3-59 #3              | 221                      | 174                | 130 #                      | 90 #3- 42 #               | 52                        | 5                 | E A                      | 0#<br>0#       | 2 <del>4</del>                       | 2 9                      | 0#                        | # #3                          | PROI                                       | 1.27                                                     | 26.69 2           | -                 | 1.02                                    |                                   |          | RUP A                                                        | propert<br>leflectio<br>' spans)<br>size sp.                                                                                                                                                                                                                                                                                                |
| SIOL SPA                                                                                     | NO            |                |        | (H)         | 3.5            |                              |                          |                    | 1                          |                           |                           | 0                 |                          |                |                                      | = =                      | Ē                         | STIR<br>STIR                  |                                            |                                                          |                   |                   | CNI .C                                  |                                   |          | G STIR                                                       | section<br>tion of c<br>interior<br>t stirrup                                                                                                                                                                                                                                                                                               |
| ONE-WAY JOISTS<br>MULTIPLE SPANS                                                             | TOP BARS      | BOTTOM RARS NO | BARS   | STEEL (     | CLEAR SPAN     | 37'-0" (3)<br>STIR           | 38'-0"<br>S <sup>7</sup> | 39'-0"<br>S        | 40'-0"                     | 41'-0"<br>SI              | 42'-0"<br>ST              | 43'-0"<br>ST      | 44'-0"                   | 45'-0"         | 46'-0"<br>STID                       | 47'-0"                   | 48'-0"                    | STIR<br>49'-0"<br>STIR        |                                            | VEGATIVE MOMENT<br>STEEL AREA (SQ. IN)<br>ACTIUN STEEL & | EFF. DEPTH, IN.   | - ICR/IGR         | POSITIVE MOMENT<br>STEEL AREA (SQ. IN.) | ACTUAL STEEL %<br>EFF. DEPTH, IN. | +ICR/IGR | SINGLE LEG STIRRUP AT 13 IN. CONSTANT SPACING-DISTANCE (IN.) | (1) For gross section properties, see Table 8.3.<br>(2) Computation of deflection is not required above horizontal line (thickness $\geq \ell_n/18.5$ for end spans, $\ell_n/21$ for interior spans).<br>(3) Single leg string size space at X in. cc. Distance over which strirups must extend from face of sup-<br>port at each end (in). |
|                                                                                              | T             |                |        |             |                | 0                            | 4                        | 0                  | -                          | ~                         | **                        | 10                | ~                        | 10             |                                      |                          | -                         |                               |                                            | Z                                                        |                   | 1                 | 20                                      | <u>ч</u> ш                        | +        |                                                              |                                                                                                                                                                                                                                                                                                                                             |
| $f_{\rm c} = 4,000 {\rm \ psi}$<br>$f_{\rm y} = 60,000 {\rm \ psi}$                          |               | Defi           | Coeff  | (2)         |                |                              | 4.894                    | 5.430              | 6.009                      | 6.633                     | 7.304                     | 8.025             | 8.798                    | 9.625          | 10.510                               | 11.454                   | 12.460                    | 13.532                        |                                            |                                                          |                   |                   |                                         |                                   |          |                                                              | 'su                                                                                                                                                                                                                                                                                                                                         |
| = 4,(                                                                                        | #8            | -              |        | .89         | z              |                              | 8 2614<br>8 #4-178       |                    |                            |                           |                           |                   |                          |                |                                      |                          |                           |                               |                                            | 4.46                                                     | 191 (191 (1))<br> | .367              | 2.54                                    | 26.36                             | .329     |                                                              | nd spar<br>ace of :                                                                                                                                                                                                                                                                                                                         |
|                                                                                              | 7.4           | -              | ~      | - 89        | IN LEHIOR SPAN | #                            |                          | B 2030<br>3 #4-172 | 1897 1897                  | 8 1773                    | 1 1658<br>1 #3-180        | 3 #3-182          | 1 1452                   | 1359           | 1272 #3-163                          | 1190 #3-170              | 1114                      | 1042 #3-114                   |                                            | 112                                                      | 26.56             | .333              | 2.18                                    | 17                                | .291     |                                                              | 3.5 for ∈<br>d from i                                                                                                                                                                                                                                                                                                                       |
| Depth<br>AD (PL                                                                              | 9#            | -              | -      |             | INIERI         | ŧ                            | 共                        | 5 1549<br>5 #3-143 |                            |                           | #                         | 1156 #3-163       |                          | 998 #3-166     | 926<br>#3-167                        | 859<br>#3-168            | 796                       | #3-170<br>#3-170              | F/SF)                                      | 3.02                                                     | 0.000             | 197               |                                         |                                   | .242     | (IN.)                                                        | ≥ ℓ <sub>n</sub> /18<br>st exten                                                                                                                                                                                                                                                                                                            |
| " Total                                                                                      | #6            | -              | -      | 88          |                | ŧ                            | 1 1399<br>3 #3-144       | 2 1295<br>1 #3-146 | t 1198<br>3 #3-147         | 391 1108<br>#3- 81 #3-148 | 1 1025<br>8 #3-149        | 6 947<br>6 #3-150 | 875 #3-151               | 807 #3-152     | 744 #3-153                           | #3-153                   | 629                       | 576<br>#3-154                 | .79 C                                      | 2.64                                                     | 26.63             |                   |                                         |                                   | .217     | TANCE                                                        | kness ,                                                                                                                                                                                                                                                                                                                                     |
| = 28.5<br>APOSE                                                                              | # 5<br>10.0   | -              |        | 68.         | 0.02           | #3                           | #3                       | F 502<br>#3-84     |                            |                           |                           |                   | -                        | 211 #3-71      | 174 #3-67                            | 136 #3- 64               | 106                       | 21.989 74 576 #3-             | CRETE                                      | 1.49                                                     | 26.69             | -10 <del>1</del>  | .93                                     | 26.69                             | .135     | G-DIS                                                        | ine (thic                                                                                                                                                                                                                                                                                                                                   |
| 24" Deep Rib + 4.5" Top Slab = 28.5" Total Depth<br>FACTORED USABLE SUPERIMPOSED LOAD (PLF)  | End           | -              | Coeff. | (7)         |                |                              |                          |                    |                            |                           |                           |                   | 14.296                   |                |                                      |                          |                           | 21.989                        | (CON                                       |                                                          |                   |                   |                                         |                                   |          | PACIN                                                        | izontal I                                                                                                                                                                                                                                                                                                                                   |
| 4.5" Tc<br>3LE SL                                                                            | # 7           | 1              |        | 2./0        |                | #                            | #                        | 1475 #3-190        | 批                          | #                         | #                         | #3                | 1016<br>#3-187           |                |                                      |                          |                           | 691<br>#3-210                 | SIGN                                       | 3.20<br>1.180                                            | 26.56             | 767               | 2.54                                    | 26.36                             | .329     | ANT S                                                        | iove hor<br>stance o                                                                                                                                                                                                                                                                                                                        |
| RIb +                                                                                        | #6            | -              |        | 2.19        | 3L             | 1393<br>#3-153               | #3-162                   | 1187 #3-170        | 1096 #3-177                | 1011 #3-179               | #3-                       | #3-               | 790 #3-184               | #3-            | 666<br>#3-187                        | 610<br>#3-188            | 558<br>#3-189             | 508<br>#3-190                 | OR DI                                      | 2.64                                                     | 26.63             | 007               | 2.18                                    | 26.52                             | .291     | ISNO                                                         | lle 8-3.<br>uired ab<br>cc. Di                                                                                                                                                                                                                                                                                                              |
| fORED                                                                                        | 10.0          | -              |        | 28-<br>- VL |                | 1026<br>#3-153               | #3-154 #3                | #3-155             | 782 1<br>#3-156 #3-        | #3                        | #3-                       | #3-               | 531<br>#3-158            | 478<br>#3-158  | 429<br>#3-158 #3                     | 383<br>#3-158 #3-        | 340<br>#3-158             | 299 #3-157                    | TIES F                                     | 2.11<br>.776                                             | 26.63             | 617               | 1.79                                    | 26.46                             | .242     | 3 IN. C                                                      | see Tab<br>not requ<br>at X in.                                                                                                                                                                                                                                                                                                             |
|                                                                                              | #5            | -              | 1# 8   | - 8         | 000            | 832<br>9 #3-139<br>764       | #3-139                   | () #3-140          | 616<br>#3-140              | 554<br>#3-140             | 49/<br>#3-140             | #3-139            | 393 #3-139               | 347<br>#3-138  | 303<br>#3-137                        | 262<br>#3-136            | 224 #3-135                | 188<br>#3-133                 | PROPERTIES FOR DESIGN (CONCRETE .79 CF/SF) |                                                          | 26.69             |                   | 1.58                                    |                                   | 117      | P AT 1;                                                      | perties,<br>ction is<br>ns).<br>space a                                                                                                                                                                                                                                                                                                     |
|                                                                                              | D #4<br>T 9.0 |                | 1#5    | 12          | 000            | #3- 59 1                     | 1000                     |                    |                            |                           |                           |                   |                          |                |                                      |                          |                           |                               | _                                          | -                                                        | 26.75             | 27                | .93                                     | 26.69                             | .130     | SINGLE LEG STIRRUP AT 13 IN. CONSTANT SPÅCING-DISTANCE (IN.) | (1) For gross section properties, see Table 8.3.<br>(2) Computation of deflection is not required above horizontal line (thickness $\geq \ell_n/18.5$ for end spans,<br>(3) Caronic prime is a space at X in c. c. Distance over which stirrups must extend from face of support at each end (in, ).                                        |
| PANS                                                                                         | NO            | BOTTOM BARS NO | ON     | CI FAR SDAN | 107 11         | 37'-0" (3)<br>STIR<br>38' 0" | STIR                     | 39'-0"<br>STIR     | 40'-0"<br>STIR             | STIR                      | STIR                      | STIR              | STIR                     | STIR           | STIR                                 | STIR                     | STIR                      | 49'-0"<br>STIR                |                                            | NEGATIVE MOMENT<br>STEEL AREA (SQ. IN)<br>ACTUAL STEEL % | IV.               | DOSTINE AND ADVIT | STEEL AREA (SQ. IN.)                    | Z                                 |          | EG S                                                         | For gross section pro<br>Computation of defle<br>$\ell_{0}/21$ for interior spec<br>Single leg stirrup size<br>port at each end (in.)                                                                                                                                                                                                       |
| ONE-WAY JOISTS<br>MULTIPLE SPANS                                                             | OP BARS       | m              |        | U           |                | 37'-0"<br>S<br>38'-0"        |                          | 39'-0"<br>S        | )-,0                       | 10                        | 42'-0"<br>S]              | 43'-0"<br>S]      | 44'-0"<br>S]             | 45'-0"<br>S1   | 46'-0"<br>S                          | 47'-0"<br>S              | 48'-0"<br>S               | 0-,6                          |                                            | VEGATIVE MOMI<br>STEEL AREA (SQ<br>ACTUAL STEEL %        | EFE DEPTH, IN.    | Can a             | STEEL AREA (SQ                          | EFF. DEPTH, IN                    | HURVION  | Ш                                                            | or gru<br>ompu<br>/21<br>ingle<br>ort at                                                                                                                                                                                                                                                                                                    |

| The I                               | -                       | (C)           | × 10 <sup>-9</sup>             | in.     | 122          | 121          | 96<br>8              | 3      | 83           | 78           | 67             | 60                   | 0.1   | 80 93        | 8      | 49                   | ŧ    |   | oment                                                                                                                                                                                                                                                                                                                | t load                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------|-------------------------|---------------|--------------------------------|---------|--------------|--------------|----------------------|--------|--------------|--------------|----------------|----------------------|-------|--------------|--------|----------------------|------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOP BM.                             | .day                    | "WMA-         | (9)                            | ft-kip  | 419<br>548   | 507<br>659   | 703<br>1089<br>904   | 1256   | 562<br>838   | 681          | 949            | 1544<br>1159         | 000   | 1014         | 1407   | 1407<br>1998<br>1612 | 2350 |   | sign me                                                                                                                                                                                                                                                                                                              | i (in.) =<br>abulated<br>ken as w                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | A + L Yolki             |               | STEEL                          | lb.     | 963<br>1655  | 1172         | 1988<br>2681<br>2554 | 3218   | 1316<br>2158 | 1737         | 2571           | 3552<br>3248<br>4227 | 10201 | 1591         | 3561   | 3683<br>5628<br>4404 | 6278 |   | +φM <sub>n</sub> andφM <sub>n</sub> are design moment<br>strendth canactines for reconcilion condi-                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                         | 36.4          | Al Al                          | in.     | 2.1          | 2.1          | 2.1                  | 2.1    | 3.2          | 1 - 5        |                | 3.1                  | -     | 4.3          | 4.1    | 4.1                  | 4.1  |   | <br>φM <sub>n</sub>                                                                                                                                                                                                                                                                                                  | 4, whe<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| W                                   | 1212                    | - 0 -         |                                | kips    | 6            | 8.6          | 8.928                | 91     | 42           | 42           | 8 4 5          | 100<br>166           | 69    | 249          | 249    | 62<br>62             | _    |   | M <sub>n</sub> and                                                                                                                                                                                                                                                                                                   | h.<br>span e<br>(6) $\times l_n$ in i<br>rage se                                                                                                                                                                                                                                                                                                                                                                                    |
| BEAM                                |                         | SPAN 0        | STIR.<br>TIES                  | (2)     | 225H         | 2051         | 164J<br>275F<br>165J | 315E   | 123J<br>723A | 133J<br>315F | 154J           | 315t<br>165J<br>365D | 1241  | **           | 315E   | 545B<br>185FqJ       | 545B |   | (6) +φM <sub>n</sub><br>strenath                                                                                                                                                                                                                                                                                     | b ×<br>(w/1<br>(w/1,<br>(k/ft,<br>(k/ft,                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                         |               | (4)                            | K/I     | 1.4          | 0.0          | 8./                  |        | 6.9          | 8.4          | 11.7           | 14.3                 | 86    |              | -      | 19.9                 | -    |   |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| i <del>≺ u ≻</del>                  |                         |               | STEEL                          | 1D.     | 1571         | 1686         | 2551<br>2439         | 3030   | 1251 1995    | 1648<br>2715 | 2624           | 3098<br>4284         | 1748  | 1504<br>2294 | 3351   | 5316<br>4196         | 5931 |   | (5) For each beam design, first line is for open stirrups, secondline is for closed ties. See Fig. 12.4. At free ends, use stirrups tabulated for "Interior Spans," For b > 24 in, provide 4 legs (two stirrups) of size and spacing tabulated. For stirrup shows we are not non-non-non-non-non-non-non-non-non-non | STIRRUPS AND REQUENT, SEE PAGE 12-13.<br>STIRRUPS AND RECOMMENDED<br>MAXIMUM SPACING IS LESS THAN 3 INCHES. NOT RECOMMENDED<br>SHEAR STRESS IS GREATER THAN 10// <sup>7</sup> / <sup>7</sup><br>TORSION STRESS IS GREATER THAN 10/ <sup>7</sup> / <sup>7</sup>                                                                                                                                                                      |
|                                     | 0                       | = 34 ft       | Al<br>sq.                      | 6. L    | 2.2          | 2.1          | 5.1                  | 21     | 3.2          | 3.2          | · <del>.</del> |                      | 1     | 4.4          | 4.2    | 42                   | 4.2  |   | ties. Set 4 legs (                                                                                                                                                                                                                                                                                                   | T RECO                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | 1.7L <sup>(3</sup>      | SPAN, $l_n =$ | φT <sub>n</sub>                |         | 3.6%         | 325          | 3283                 | -      | _            |              |                | 42                   | 63    | 251<br>63    | 251    | 51<br>51<br>53       | 251  |   | closed<br>rovide                                                                                                                                                                                                                                                                                                     | S. NO                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                     | .4D+                    | SPAN          | STIR.<br>TIES                  | 1231    | 215H         | 1951         | 265F<br>165J         | 295E   | 215H         | 133J<br>295E | 155J<br>345D   | 165GcJ<br>415C       | 114J  | ** 134J      | 295E   | 515B<br>185FhJ       | 5158 |   | e is for                                                                                                                                                                                                                                                                                                             | E 12-13<br>I $0\sqrt{f_c'}$<br>ABLE                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | $U = 1.4D + 1.7L^{(3)}$ |               | LOAD<br>(4)                    | NIN 6.2 | 89           | . 2.0        | 12.0                 | c<br>r | 8.7          | 9.4          | 13.1           | 16.0                 | 9.6   | 13.4         | 19.0   | 223                  |      |   | Secondlin<br>For b > 2                                                                                                                                                                                                                                                                                               | STIRRUPS ARE NOTIFICIATED THE UNITED THE UNITED THE NOTIFIC THE NOTIFIED THE NOTIFIED THE NOTIFIED THE STREATER THAN 10/ $\vec{F}_{1}^{T}$ TORSION STRESS EXCEEDS ALLOWABLE                                                                                                                                                                                                                                                         |
| -1                                  | TOTAL CAPACITY          |               | STEEL<br>WGT                   | 870     | 1451 1057    | 1812         | 2532<br>2295         | 3020   | 1847         | 2585         | 2467<br>3344   | 2947 4009            | 1661  | 2177         | 3187   | 3988                 | 1900 |   | stirrups,<br>r Spans".                                                                                                                                                                                                                                                                                               | STIRRUPS ARE NOT REQUIRED<br>MAXIMUM SPACING IS LESS THA<br>SHEAR STRESS IS GREATER TH<br>TORSION STRESS EXCEEDS ALL                                                                                                                                                                                                                                                                                                                |
|                                     | IL CAI                  | = 32 ft       | A Sq.                          | 2       | 2.2          | 2.2          | 22                   | 7'7    | 3.2          | 3.2          | 3.2            | 3.2                  | 1     | C. + C       | 4.2    | 4.2                  | 4.4  |   | Interio                                                                                                                                                                                                                                                                                                              | RE NO<br>PACING<br>ESS IS<br>RESS I                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | TOTA                    | 6º            | φT <sub>n</sub><br>ft-<br>kins | 23      | 32           | 92           | 888                  | CV 76  | 169          | 169          |                |                      | 8     |              |        | 253<br>83            | 007  |   | ne is fo<br>ted for                                                                                                                                                                                                                                                                                                  | UPS AL<br>UPS AL<br>UM SF<br>UM SF<br>R STRE                                                                                                                                                                                                                                                                                                                                                                                        |
| ú                                   |                         | SPAN,         | STIR.<br>TIES<br>(5)           | 123J    | 195H<br>133J | 245F<br>144J | 285E<br>155J<br>325D | 1231   | 195H         | 285E         | 325D           | 165GdJ<br>385C       | 114J  | 134J         | 155GeJ | 4858<br>185EiJ       | 000+ |   | n, first li<br>s tabula                                                                                                                                                                                                                                                                                              | STIRR<br>MAXIN<br>SHEAJ<br>TORSI                                                                                                                                                                                                                                                                                                                                                                                                    |
| AMS                                 |                         |               | LOAD<br>(4)<br>kft             | 5.9     | 7.1          | 11.0         | 13.5                 | 88     | 10.6         | 140          | 14.8           | 18.1                 | 10.9  | 15.1         | 21.5   | 25.2                 |      | - | am designe<br>e stirrups<br>cing tabu                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| JOIST-BAND BEAMS,<br>INTERIOR SPANS |                         | 10.00         | STEEL<br>WGT<br>Ib.            | 814     | 1331<br>990  | 1718 1825    | 2365<br>2150<br>2837 | 1109   | 2072         | 2414         | 3136           | 2765<br>3775         | 1573  | 2192         | 3167   | 4693<br>3850<br>5237 | 0501 |   | each bea<br>ends, us<br>and space                                                                                                                                                                                                                                                                                    | Other notation:                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANI                                 |                         | = 30 ft       | Al Sq. ii                      | 1       | 2.2          | - 22         | 22                   |        | 3.2          | 3.2          | 3.2            | 3.2                  | - 04  |              | 2 '    | 4.3                  | 2    |   | <br>(5) For<br>free<br>size                                                                                                                                                                                                                                                                                          | Other n                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T-B.                                |                         | N. Pn         | φT <sub>n</sub><br>ft-<br>kips | -       |              |              | 888                  | -      | 171          |              |                |                      | 64    | 64           | 64     | 256<br>256           |      |   | -                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SIC                                 |                         | SPA           | STIR.<br>TIES<br>(5)           | 113J    | 123J         | 145J         | 265E<br>145J<br>305D | 113J   | 265E<br>124J | 265E<br>1351 | 305D           | 365C                 | 114J  | 125J<br>455B | 165FfJ | 455B<br>455B         |      |   | For gire                                                                                                                                                                                                                                                                                                             | o bars.<br>of 1.4 x:<br>n = exces<br>ion < $l_n^n$<br>on < $l_n^n$                                                                                                                                                                                                                                                                                                                                                                  |
| r                                   |                         |               | kff (4)                        | 6.7     | 8.1          | 12.5         | 15.4                 | 10.0   | 12.1         | 16.9         | 300            | 20.02                | 12.4  | 17.2         | 24.4   | 28.7                 |      |   | <ol> <li>See "Recommended Bar Details", Fig. 12-1. For girders,<br/>use tabulated beam depth - 2 inches (b - 2<sup>n</sup>).</li> <li>It "Layers" column, first line is number of layers for bottom</li> </ol>                                                                                                       | For supering the stort manage of layors for top bars. For supering-second marks weight. For supering-sed factored load capacity, deduct 1.4 x stem weight. Total capacities tabulated causing deflection in excess of $\ell_{0}^{\prime}/360$ are designated thus: $* - \ell_{0}^{\prime}/360 < deflection in excess of \ell_{0}^{\prime}/180 are designated thus: * - \ell_{0}^{\prime}/240 < deflection in \ell_{0}^{\prime}/180$ |
|                                     |                         | TOP           |                                | 4#10    | 4#11         | 5#14         | 6#14                 | 5#11   | 5#14         | 7#14         | 0414           | 0#14                 | 6#11  | 6#14         | 9#14   | 11#14                |      |   | ails", Fi<br>nches (<br>number                                                                                                                                                                                                                                                                                       | 1 capac<br>1 capac<br>$\ell_n/360$<br>$\ell_n/240$<br>- deflect                                                                                                                                                                                                                                                                                                                                                                     |
| si                                  | BARS <sup>(1)</sup>     | Lay-          | 1                              |         | •            |              |                      | -      |              |              |                |                      |       |              |        |                      |      |   | ar Deta<br>h - 2 i                                                                                                                                                                                                                                                                                                   | ed load<br>ed load<br>sd caus<br>X - X - Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                |
| 4,000 psi<br>0,000 psi              | BA                      | BOTTOM        | 0.875<br>ln                    | 1#10    | 11#1         | 1#14         | 2#14                 | 2#10   | 2#11         | 2#14         | 2#14           |                      | 3#10  | 3#11         | 3#14   | 3#14                 |      |   | nded B<br>am dept<br>nn, first                                                                                                                                                                                                                                                                                       | d factor<br>tabulate<br>tabulate                                                                                                                                                                                                                                                                                                                                                                                                    |
| = 4,000 psi<br>= 60,000 psi         | No. Providence          | BO            | $\ell_n$ + 12 in.              | 2#10    | 2#11         | 2#14         | 2#14                 | 2#10   | 2#11         | 2#14         | 3#14           | 5                    | 3#10  | 3#11         | 3#14   | 4#14                 |      |   | commel<br>ated bea                                                                                                                                                                                                                                                                                                   | acities<br>design                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | STEM                    | <i>q</i>      | .Ċ                             |         |              | 24           |                      |        |              | 36           |                |                      |       |              | 48     |                      |      |   | ee "Rec<br>tabult<br>"Layers                                                                                                                                                                                                                                                                                         | For superior second weight.<br>Total capa<br>ℓ <sub>n</sub> /360 are                                                                                                                                                                                                                                                                                                                                                                |
| f <sub>c</sub> ,                    | S                       | 4             | . <u></u>                      |         |              |              |                      |        |              | 28.5         |                |                      |       |              |        |                      |      |   | (1) S(<br>us<br>(2) In                                                                                                                                                                                                                                                                                               | (3) Fo<br>we<br>(4) To<br>l <sub>n</sub> /                                                                                                                                                                                                                                                                                                                                                                                          |

|                                |                        | DEFL                                                       | E E                            | × 10 <sup>-3</sup><br>in.<br>213<br>204<br>155                                       | 134<br>147<br>134<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00<br>100<br>81<br>69                                                                                                                                                                      |                                          | on ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------|------------------------|------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                        | u₩¢+                                                       |                                | ft-kip<br>419<br>507<br>507<br>507<br>904<br>904                                     | 1089<br>681<br>681<br>681<br>681<br>949<br>949<br>838<br>838<br>1357 -<br>1357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 838<br>838<br>1014<br>1014<br>111407<br>1612<br>1809<br>1998<br>2178<br>2178                                                                                                               |                                          | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BEAM                           | 1                      |                                                            | STEEL                          | 989<br>1671<br>1671<br>1878<br>2788<br>2788                                          | 2/99<br>3404<br>1381<br>2213<br>2213<br>1839<br>2604<br>3247<br>3985<br>3985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                          | , are des<br>for rectan<br>deflection<br>re w = ta<br>ad" is take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                |                        |                                                            |                                |                                                                                      | 3.1 3.1 3.1 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1<br>4.2<br>4.1<br>4.1<br>4.1                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            |                                | kips<br>88 23 89 23 89 23                                                            | 163<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                            |                                          | $l_n$ and $l_n$ and $h_n$ and $h_n$ $pan e pan e (h_n in f)$ age se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                |                        |                                                            | STIR. $\phi_T$                 | (5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)                   | 315E 315E 133J 723A 143J 723A 143J 175J 315E 315E 175J 175J 175J 175J 175J 175J 175J 175J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 435C<br>134J<br>**<br>144J<br>144J<br>175J<br>545B<br>545B<br>545B<br>545B                                                                                                                 |                                          | (6) $+\phi M_n$<br>strength<br>b × h.<br>(7) Midspat<br>(w(rt.), $\ell_n$<br>(k(rt.), $\ell_n$<br>"Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                              |                        |                                                            | LOAD<br>(4)                    | кл<br>3.6<br>4.3<br>7.0<br>8.4                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1<br>8.6<br>13.7<br>16.8* 2                                                                                                                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i <del>≺ u ≻</del>             | 40 + 171(3)            | 1.4D + 1.7L <sup>43</sup><br>SPAN, ℓ <sub>n</sub> = "34 ft | STEEL                          | lb.<br>945<br>11589<br>11589<br>1150<br>1786<br>2021<br>2659<br>2659                 | 3213<br>1317<br>1317<br>2094<br>1751<br>2807<br>3107<br>3307<br>3370<br>3793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4882<br>1856<br>1566<br>2411<br>3299<br>3775<br>5545<br>5545<br>6398                                                                                                                       |                                          | trup stirrup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                |                        |                                                            | A A                            | 1.552 M                                                                              | 21<br>3.1,3.1,3.1,3.1,3.1,3.1,3.1,3.1,5.1,5.1,5.1,5.1,5.1,5.1,5.1,5.1,5.1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.1<br>4.1<br>4.1<br>4.1<br>4.1                                                                                                                                                            |                                          | Hes. Se (1 legs (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JOIST-BAND BEAMS,<br>END SPANS |                        |                                                            | φT <sub>n</sub>                | State -                                                                              | 90<br>41<br>164<br>41<br>164<br>41<br>41<br>164<br>41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62                                                                                                          |                                          | ovide 4<br>ovide 4<br>S. NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                |                        |                                                            | STIR.<br>TIES                  | (5)<br>133J<br>215H<br>143J<br>143J<br>143J<br>143J<br>174J<br>265F<br>175J          | 295E 295E 133J 683A 683A 143J 295E 175J 345D 345D 195GeJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4150<br>4150<br>134J<br>144J<br>175J<br>515B<br>515B<br>515B                                                                                                                               |                                          | <ul> <li>(5) For each beam design, first line is for open stirrups, secondline is for closed ties. See Fig. 124. At free ends, use stirrups tabulated for "Interior Spans". For b &gt; 24 hr, provide 4 legs (two stirrups) of size and spacing tabulated. For stirrup nomenclature, see page 12-13.</li> <li>min Other notation: WA – STIRRUPS ARE NOT REQUIRED</li> <li>min Other notation: WA – STIRRUPS ARE NOT REQUIRED</li> <li>min Other notation: WA – STIRRUPS ARE NOT REQUIRED</li> <li>min – MAXIMUM SPACING IS LESS THAN 3 INCHES. NOT RECOMMENDED</li> <li>min – SHEAR STRESS IS GREATER THAN 10 √P<sup>2</sup>/P<sup>6</sup></li> <li>min – TORSION STRESS EXCEEDS ALLOWABLE</li> </ul> |
|                                | 4 1                    | C = 1                                                      | (4)                            | k/ft<br>4.0<br>4.8<br>7.8<br>9.4                                                     | 6.0<br>7.3<br>11.7<br>14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0<br>9.6<br>15.3<br>18.8<br>2                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | TOTAL CAPACITY         | = 30 ft SPAN                                               | STEEL                          | lb.<br>890<br>1471<br>1471<br>1095<br>1620<br>1909<br>2492<br>2505                   | 3059<br>3059<br>1975<br>1975<br>1662<br>2677<br>2677<br>2935<br>3747<br>3588<br>3588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1748<br>1748<br>1481<br>1481<br>3098<br>3098<br>3603<br>3603<br>5233<br>6039<br>6039                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            | Al<br>sq.                      | 2.1 2.1 .                                                                            | 3.1 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.1 4.1 4.1                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            | φT <sub>n</sub><br>ft-         | x 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                              | 90<br>166<br>1165<br>41<br>165<br>41<br>41<br>41<br>41<br>41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            | STIR.<br>TIES                  | (5)<br>195H<br>143J<br>185I<br>185I<br>164J<br>245F<br>165J                          | 285E 285E 143J 285E 143J 285E 165J 325D 325D 385C 3855C 38555C 3855C 3855C 3855C 38555C 3855C 3855C 3855C 38 |                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            | LOAD<br>(4)                    | 4.5<br>5.4<br>5.4<br>8.8<br>10.6                                                     | 6.8<br>8.2<br>13.3<br>16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0<br>10.9<br>17.3<br>21.3                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            | STEEL<br>WGT                   | 845<br>845<br>1390<br>1030<br>1528<br>1528<br>1528<br>2368<br>2358<br>2358           | 1176<br>1796<br>1563<br>2505<br>2505<br>33525<br>3415<br>4329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1662<br>2448<br>2162<br>3080<br>3395<br>4921<br>4921<br>5681<br>5681                                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            | Al<br>sq.                      | 244                                                                                  | 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.2 4.2 4.2 4.2 4.2 4.2 4.2                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        |                                                            | φT <sub>n</sub><br>ft-<br>kins | - 23 - 23 - 23 - 23 - 23 - 23 - 23 - 23                                              | 42<br>167<br>167<br>167<br>167<br>167<br>167<br>167<br>167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63<br>250<br>63<br>63<br>63<br>250<br>63<br>250<br>250<br>250<br>250                                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                        | SPAN, $\ell_n$                                             | STR.<br>(5)                    | 1231<br>1231<br>1333<br>1333<br>1751<br>1554<br>1554<br>2355<br>1554<br>2355<br>1554 | 123J<br>133J<br>133J<br>265E<br>155J<br>305D<br>365C<br>365C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124J<br>364C<br>134J<br>265E<br>165GeJ<br>455B<br>455B<br>455B                                                                                                                             | or pintere                               | Use labulated barn depth—2 inches $(6-2^{\circ})^{\circ}$ or gradows in "Labors" column, first line is number of layers for bottom bars, second line is for number of layers for top bars.<br>(3) For superimposed factored load capacity, deduct 1, x stem weight, weight, $(4)$ Total capacities tabulated causing deflection in excess of $\ell_{0}^{\circ}/360$ are designated thus: * $-\ell_{0}^{\circ}/360$ < deflection i excess of $\ell_{0}^{\circ}/360$ are designated thus: * $-\ell_{0}^{\circ}/360$ < deflection $< \ell_{0}^{\circ}/240$                                                                                                                                               |
|                                |                        |                                                            | (4) KIII                       | 5.1<br>6.2<br>10.1<br>12.1                                                           | 7.7<br>9.3<br>15.1<br>18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.3<br>12.4<br>19.7<br>24.2<br>2                                                                                                                                                          | 12-1. F                                  | f layers<br>for top<br>deduct<br>ztion in<br>teflectio<br>leffectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                |                        | TOP                                                        |                                | 4#10<br>4#11<br>4#14<br>5#14                                                         | 5#10<br>5#11<br>6#14<br>8#14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6#11<br>6#14<br>8#14<br>10#14                                                                                                                                                              |                                          | hes (b -<br>mber o<br>apacity,<br>g deflec<br>(360 < c<br>(360 < c<br>eflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | S <sup>(1)</sup>       | Lay-                                                       | 8                              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>1<br>1<br>1<br>1<br>1<br>0<br>4<br>1<br>1<br>1<br>0<br>4<br>0<br>1<br>1<br>1<br>0<br>4<br>0<br>1<br>1<br>1<br>0<br>4<br>0<br>1<br>1<br>1<br>0<br>4<br>0<br>1<br>1<br>1<br>0<br>1<br>0 | Details                                  | -2 inc<br>ine is number of<br>hoad ca<br>$x = -l_{n}^{2}$<br>$X = -l_{n}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 psi<br>0 psi                 | EM BARS <sup>(1)</sup> | WO.                                                        | 0.875<br>ln                    | 1#10<br>1#11<br>2#14<br>2#14<br>2#14                                                 | 2#11<br>2#14<br>3#14<br>3#14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3#10<br>3#11<br>3#14<br>4#14                                                                                                                                                               | d Bar                                    | depth -<br>first lin<br>for nur<br>ictored<br>ulated<br>id thus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = 4,000 psi<br>= 60,000 psi    |                        | BOTTOM                                                     | $\ell_n + 12 \text{ in.}$      | 2#10<br>2#11<br>2#14<br>3#14                                                         | 2#11 2<br>2#14 2<br>3#14 3<br>3#14 3<br>4#14 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3#10 3<br>3#11 3<br>3#11 3<br>3#11 3<br>3#14 4<br>4<br>4<br>4<br>4                                                                                                                         | See "Recommended Bar Details", Flq. 12-1 | Use labulated beam depth — 2 inches ( $\overline{b}$ — 2 *),<br>(2) use labulated beam depth — 2 inches ( $\overline{b}$ — 2 *),<br>(3) for superimposed factored load capacity, deduct<br>weight.<br>(4) Total capacities tabulated causing deflection in<br>(4) Total capacities tabulated causing deflection in<br>(7) 360 are designated thus: $* - \frac{4}{n}$ ,360 < deflection in<br>(7) 7 = 4 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2                                                                                                                                                                                                                                                        |
|                                |                        | q                                                          |                                | 54                                                                                   | 36 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33<br>34<br>54<br>54                                                                                                                                                                       | Recon                                    | abulate<br>ayers" (<br>second<br>uperimp<br>nt.<br>Capacit<br>0 are de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t <sub>v</sub>                 | STEM                   | 4                                                          | .si                            |                                                                                      | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            | (1) See                                  | use tab<br>(2) In "Lay<br>bars, s,<br>bars, s<br>(3) For sup<br>weight<br>(4) Total c<br>(4) Total c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Two-Way Flat Slab with Drop Panels with CIP Framing System



```
2
Long Span Direction Slab Design
       l_{1} = 46'
       12=30'
       \ln = 40' - \frac{20''}{12} = 44.33'
 t_{siab} = \frac{ln}{33}
                ACI 318-02 Table 9.5 (c)
                        -drop panels
-without edge beam
      = 44.33'
        33
      = 1.34' × 12"/FT
      = 16.12" -> 16.5" slab
 Panel Thickness
        E(1) 2" und=) 2" 105
            ts1ab14 = 16,5/4 = 4.125" → 4.5" *
 Panel Weight
       8'(5')(4 panels)(4.5"/12)(150 PCF) = 9000#
       \frac{9000 \#}{(46')(30')} = 6.52 \text{ PSF}
 Loads:
    Dead:
         SDL = 15 PSF
         SIAD = 16.5" 150 PCF = 200.25 PSF
                 12
         Panels = 6.52 PSF
    Live!
       Office = 100 PSF - 66 PSF Live Load Reduction
                                          AT= 46' (30')= 1380 FT2
                                          KLL=1
                                     L= 100 (0:25+ 15
                                                  1-1380
                                     L= 66 PSF
  Wu= 1.2(15+206.25+6.52)+1.6(66)
  WN= 379 PSF
```

$$Mo: \frac{Wu \ln 2n^{2}}{\theta}$$

$$Mo: \frac{2}{2} \frac{1}{\theta} = \frac{2}{\theta} (30^{2})(44.32^{2})^{2}$$

$$Mo: \frac{2}{2} \frac{1}{12} \frac{1}{\theta} = \frac{2}{\theta} (30^{2})(44.32^{2})^{2}$$

$$Mo: \frac{2}{2} \frac{1}{12} \frac{1}{\theta} = \frac{1}{\theta} (16^{2} + 16^{2}) \frac{1}{(17^{2} + 16^{2})} \frac{1}{\theta} (17^{2} + 16^{2}) \frac{1}{(17^{2} + 16^{2})} \frac{1}{\theta} (17^{2} + 16^{2}) \frac{1}{(17^{2} + 16^{2})} \frac{1}{\theta} (17^{2} + 16^{2}) \frac{1}{(17^{2} + 16^{2})} \frac{1}{\theta} \frac{1}$$

$$\frac{4}{1}$$
Try #8.08"
$$\frac{1}{1000} = \frac{1000}{0.65(H)(12)} = 1.74"$$

$$\frac{1000}{0.65(H)(12)} = 1.74"$$

$$\frac{1000}{120} = 1.74"$$

$$\frac{1000}$$

$$\int A_{min} = 0.0018(10^{\mu}.5)(12) = 0.30 \\ 0.0018(21)(12) = 0.45$$

$$Try = 12^{\mu}$$

$$a = 0.6(60) = 0.88^{\mu}$$

$$a = 0.6(60)(14.25 - 0.88^{\mu}) = 0.68^{\mu}$$

$$d = 0.9(0.60)(14.25 - 0.88^{\mu}) = 0.68^{\mu}$$

$$d = 0.9(0.60)(14.25 - 0.88^{\mu}) = 0.68^{\mu}$$

$$M'd. = c \leq k MS$$

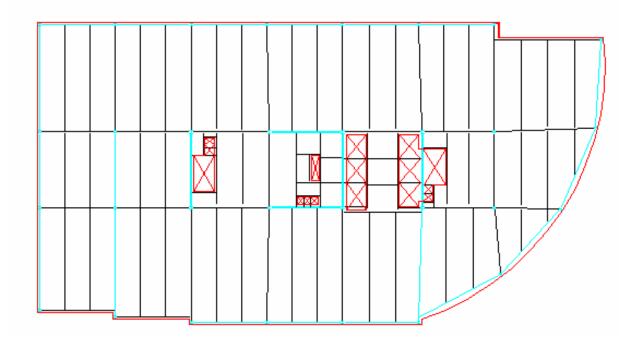
$$Try = 7.88^{\mu}$$

$$a = 0.6(60)(1.5^{\mu}) = 1.32^{\mu}$$

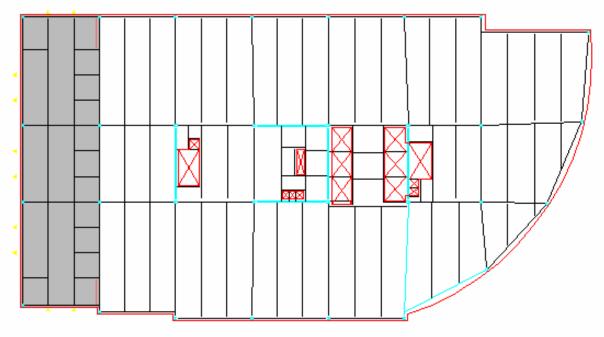
$$0.86(4)(12)$$


$$d = 0.9(0.6)(15)(60)(18.75 - 1.32^{\mu}) = 1.32^{\mu}$$

$$a = 0.6(60)(1.5)(60)(18.75 - 1.32^{\mu}) = 1.32^{\mu}$$


$$a = 0.6(60)(1.5)(60)(1.6,75 - 1.32^{\mu}) = 1.32^{\mu}$$

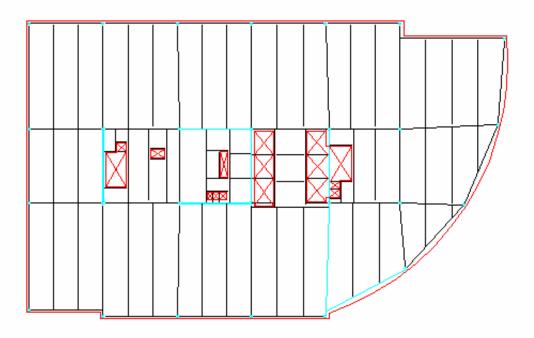
$$a = 0.6(60)(1.5)(60)(1.6,75 - 1.32^{\mu}) = 1.32^{\mu}$$


# 2<sup>nd</sup> Floor Faming Plan

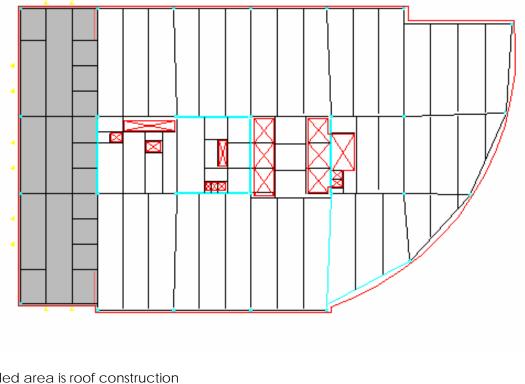


3<sup>rd</sup> – 5<sup>th</sup> Floor Framing Plan




# 6<sup>th</sup> Floor Framing Plan

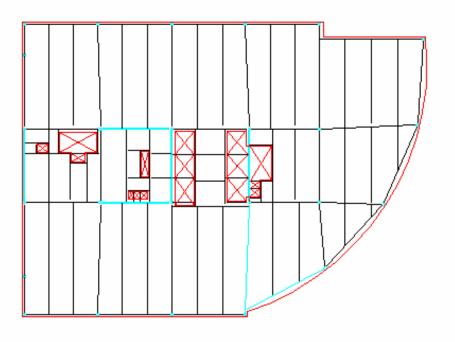



Note: Shaded area is roof construction



# 7-9th Floor Framing Plan




# 10th Floor Framing Plan



Note: Shaded area is roof construction

Ν

# 11th and 12th Floor Framing Plan



# References

CRSI 2002 Design Handbook PCI Design Handbook, 5<sup>th</sup> edition ACI 318-02 ASCE 7-02