

Table of Contents

•	Cover Pagei
•	Thesis Abstractii
•	Table of Contentsiii
•	Executive Summary1
•	Project Background2
•	General Architecture
•	Depth Study
	Introduction6
	Existing Structural System7
	Alternate Structural System Design
•	Breadth Study
	Acoustic Analysis
	Comparison of Original system with Alternate system & Conclusion13
	Building Envelope Heat Transfer Analysis14
	Comparison of Original system with Alternate system & Conclusion14
•	Summary & Conclusion15
•	References16
•	Credits/Acknowledgements17
•	Appendix
	Appendix 1: Gravity Loads – Alt. System
	Appendix 2: Depth Study Calculations
	Appendix 3: Acoustic Analysis Calculations

• Appendix 4: Building Envelope Heat Transfer Analysis Calculations

Executive Summary

Wellington at Hershey's Mill is a recently completed 370,000 square feet retirement community consisting of 5 stories and 197 independent living units located in West Chester, Pennsylvania. Wellington's structure consists of a non-composite steel framing system for the lobby and first floor and a wood floor joist, wood framed system on the top three residential levels.

The depth study for this thesis is the design of an alternate structural system that is more appropriate for Wellington's intended use. A less combustible material was preferred for a retirement community, therefore the chosen system is a hollowcore floor system supported by masonry bearing walls.

Two additional analyses were performed for the breadth study of this thesis. The intention of these studies was to determine which system offered an improved standard of living for the occupants of Wellington. An acoustical analysis of the floor system between the garage and the first floor residential section was completed to verify the amount of noise transferred through the two floor systems. To determine the amount of heat lost through the exterior walls of the apartments, a building envelope heat transfer analysis was also conducted.

A summary of my findings are:

- An initial design of the alternate system showed the need for the masonry bearing walls of the residential levels to bear directly on the columns in the garage.
- The weight of the structure increased significantly, making the current lateral system fail after the application of the new seismic loads. Reinforcing the masonry of the lateral system will allow the system to resist the loads.
- The acoustical analysis showed the alternate system to be a superior acoustic barrier between the garage and first floor.
- Heat loss calculations proved the original system was better for slowing heat loss.

Project Background

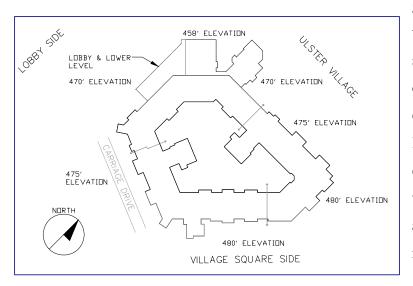
On a site between protected vegetation on a section of Serpentine Stone Ridge and major roadways in West Chester, Pennsylvania, Wellington at Hershey's Mill's construction began in December of 2003 and consisted of three phases. The first phase was to be finished within 8 months of the start date and the second and third phases were

scheduled for 20 months after the start date.

Due to miscommunications mainly between the architect, MSL Associates Ltd., and the general contractor, Caldwell, Heckles & Egan Inc. (CH&E), the first phase was not finished in the allotted time. After coming to an agreement, the contractors worked well together and completed the next two phases by August 15, 2005, just two weeks later than the goal of August 1, 2005.

The GC's contract with the owner was a bid guaranteed max price contract and the original cost was set at \$19,400,000. Setbacks and change orders caused the final price to increase to \$20,700,000.

MSL Associates Ltd. is the owner of Wellington as well as the architect. The rest of the project team consisted of CH&E as the general contractor, Sebastian & Sons, Inc. as the mechanical engineers, State Electric as the electrical contractors, and P.W. Moss & Associates as the structural engineers. All of the contractors are located in the tri-state area.



General Architecture

Building Description

Wellington at Hershey's Mill is comprised of five levels but alternating ground elevation only allows all five levels to be above ground on the south side of the building. The structure can essentially be thought of as two separate buildings; a garage level with the three residential floors above as one building and the lower level with the lobby above as the second building. The lower level is a full floor below the

garage level elevation, so the lobby is at the same elevation as the garage. The shape of Wellington is similar to that of a doughnut, permitting a courtyard to be encompassed by the three residential levels. The image to the left illustrates the elevation change of the land, the shape of the structure, and the location of the lobby and lower level with respect to the residential section of Wellington.

Envelope

The façade of Wellington incorporates a white stucco finish with white balconies and verandas. The stucco was conventionally applied to paper covered sheathing and lath. Metal stud exterior walls on the

lower, lobby and garage levels and wood stud exterior walls for the residential levels made up most of the building's envelope with the exception of the concrete masonry unit (CMU) foundation walls.

Nicole C. Drabousky Structural Option

Foundation & Structure

Wellington's foundation is made up of a 12" CMU foundation wall with 2' wide strip footings and 4" slab on grade with 6x6-W2.0xW2.0 WWF over 2-4" porous fill. The first floor's interior steel

columns sit on concrete spread footings ranging in size from $3^{\circ}x3^{\circ}$ to $4^{\circ}-6^{\circ}x4^{\circ}-6^{\circ}$. The rest of the first floor framing are steel girders supporting steel joists which in turn hold a 4" concrete slab over 1-1/2" metal floor deck (galvanized) with 6x6-W2.9xW2.9 WWF. The lobby continues with the same framing as the first floor.

Wood framing is used for the second and third floor and the roof of the residential part of Wellington. Open web wood trusses, TJLs, at 16" on center in the apartments and 2x8's at 16" on center in the corridor make up the floor framing for the second and third floor. The floor system bears on 2x6 wood stud walls. Wellington's roof is similar to the second and third floor framing except there are 24" sloped

roof trusses at 24" on center. Wellington's lateral load resisting system is a combination of wood framed gypsum shear walls and masonry towers located at the elevator shafts and stairwells.

Nicole C. Drabousky Structural Option

Depth Study

The depth study involves an alternate design for the structure of Wellington.

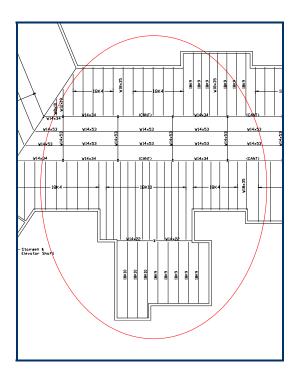
Introduction

For the depth study of this thesis, an alternative structure for Wellington will be designed. While the existing structure is sufficient, the building's use as a retirement community requires a design with a less combustible material. For this reason, the alternative design employs masonry and concrete as the main components.

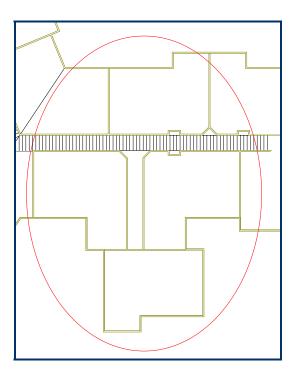
The intention of this depth study is to design the floor system, bearing walls, and foundation walls of the alternate system. The masonry towers of the lateral load resisting system remain the same as the original because it is appropriate for the architectural layout of the building. The seismic load was recalculated with the new structure weights and applied to the building. The original masonry towers failed with the increased seismic load. This is because they are constructed of unreinforced masonry; reinforcing it would allow the system to resist the load. The calculations are not included in this report, but can be seen upon request.

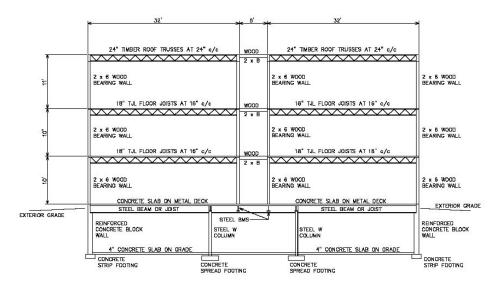
The alternate system was designed keeping the breadth analyses in mind. The design was restricted to the residential section of Wellington along with the garage directly below. Although the original intention was to keep the architecture as it was designed, it was necessary to alter the width of the hallways as well as the center section of the garage because the masonry walls of the residential floors formerly bore onto hollowcore plank. The alternate design allows the masonry walls to bear directly onto the columns in the garage. The hallways and center section of the garage were adjusted to a width of 12 feet. The weight of the alternate design was larger than the original and this approach was a

reasonable way to solve the problem of how to manage the increased weight. The increased hallway width also fits for the practical use of the space as the elderly often have motorized scooters or wheelchairs and will benefit from the increased space in the hallway. The tradeoff of gaining this increased hallways space is that each apartment has lost 3 feet in length, a small loss compared to the increased building stability and improved common hallway area.

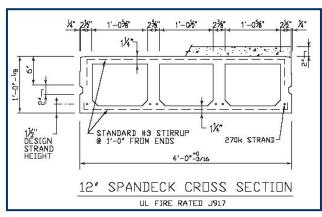

The design live loads used for both the original system and the alternate system

(ASCE 7 -02 Table 4-1):

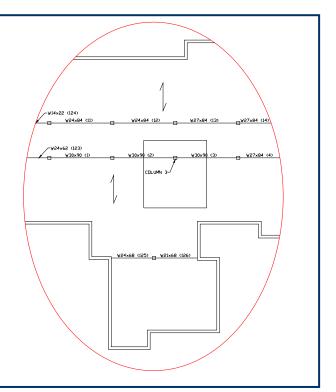

Roof:	20 psf
Private Rooms & the corridors that serve them:	40 psf


Existing Structural System

First Floor Framing


Second Floor Framing

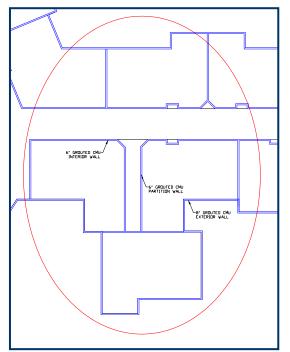
Original Building Section


Alternate Structural System

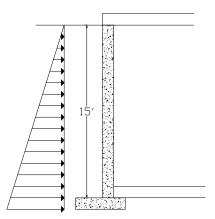
The first floor framing required concrete columns and steel beams to support the floor system because of the garage. LRFD was used to design the steel beams and the calculations were performed with the aid of a spreadsheet. A section of the designed system is shown to the right.

The concrete columns were sized using the CRSI and a calculated point load from the designed structure. Different columns were chosen to check any large differences in tributary area and load but there was not a significant difference between columns, so alternate reinforcing for

Nitterhouse pre-cast concrete hollowcore planks were chosen for the alternate floor system. Using the Nitterhouse load tables and a maximum span of 36 feet, the 12"x4' SpanDeck with 2 inch topping was chosen for the first through third floors. The topping allows the planks to behave uniformly. The roof will use the same plank without the 2 inch topping.



each column was not necessary. A 14"x14" square tied column with 4-#10's was chosen even though a 12"x12" with 8-#9's was adequate for the load. This is in case a minor accident occurs in the garage damaging a column; a wider column would be more durable and less likely to fail, preventing further damage and possible loss of life.


The second and third floors have masonry bearing walls to support the hollowcore planks. Empirical masonry design along with a spreadsheet for the calculations was used to size the walls. The exterior bearing walls were determined to be 8" grouted CMU with Type N Mortar and the interior bearing walls 6" grouted CMU with Type N Mortar. These widths were chosen to match the original design. Partition walls will be 6" grouted CMU as well to provide a sound barrier. A section of the designed structure is shown below.

The garage walls were designed using the worst case section where the full height of the wall, 15 feet, retained the earth. The soil information used for West Chester, Pennsylvania was:

At rest: equivalent fluid pressure = 57 psf Total unit weight = 125 pcf Frost depth = 36 inches

It was assumed that there was no cohesion or surcharge present in the soil. The final design was a 12" concrete wall with #7's at 12 inches.

Breadth Study

The breadth study involves acoustical & envelope heat transfer analyses and comparison of the original and alternate system.

Acoustical Analysis

An acoustical analysis of the floor system between the garage and the first floor residential space was performed to assess how adequate it was at preventing noise from transferring between the two. A comparison between the original and alternate systems shows the alternate design, masonry, to be a superior sound barrier.

The effective transmission loss (TL) of each system was found from *Architectural Acoustics* (Egan, M. David, Architectural Acoustics, 1988, McGraw-Hill, Inc., New York.). Although the exact systems were not listed, it was assumed the differences between the chosen systems were negligible. After the actual TL for each system is calculated, it was compared to the TL of the floor systems, shown on the following page.

Sound absorption coefficient is a property of a material that indicates the amount of sound that is absorbed by the materials. The construction of the floor, ceiling, and walls of the apartment were listed and the sound absorption coefficients of each were found for different frequencies. The coefficients were multiplied by the area of the spaces and the sum was taken for each frequency. These numbers, represented by the variable a_2 , are inserted into the equation $10\log a_2/S$ where S is the surface area.

The calculations begin with the source noise in decibels coming from the garage; again there's a different dB for each frequency. The background noise level in the apartments is subtracted from this number, also in dB for each frequency. This value is known as the required Noise Rating (NR). To calculate the final system TL, $10\log a_2/S$ is equated and subtracted from the required NR. Appendix 3 contains the complete calculations.

<u>Comparison</u>

<u>Alternative</u>

4 in reinforced concrete slab (54 lb/ft²) (actual system: hollowcore plank system)

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Req'd TL (dB):	26.24453039	45.75724	48.24939	53.02373	55.13228	55.13228
System TL (dB):	48	42	45	56	57	66

<u>Original</u>

18 in steel joists 16" o.c. with 1 5/8" concrete on 5/8 in plywood under heavy carpet laid on pad, and 5/8 in gypsum board attached to joists on ceiling side (20 lb/ft²)

(actual system: 18 in steel joists 16" o.c. with 4" concrete slab, heavy carpet laid on pad and gypsum board attached to joists on ceiling side)

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Req'd TL (dB):	27.22276395	45.67606	48.42668	52.91515	55.36212	55
System TL (dB):	27	37	45	54	60	65

Conclusion

Both systems have frequencies in which the TL is not adequate for sound isolation, but it can be assumed that the performance of each system is actually better than calculated because of likely real world conditions. The alternative system will have more concrete thickness than the system used in the calculations, especially with the addition of a two inch topping. The original system also has more concrete thickness than the example system because of the 4" concrete slab; over 2" inches thicker.

Comparing the systems with the calculations above would suggest the alternative system was a better sound barrier for the floor between the garage and first level.

Building Envelope Heat Transfer Analysis

A building envelope analysis was performed to assess the heat transfer through both the original and alternate systems. Since the most important section of Wellington is the living area of its residents, the analysis was through the exterior walls of the same sized room as in the acoustics analysis. The heat was calculated assuming an average January winter day in West Chester, Pennsylvania (average high = 39° F, average low = 21° F). (www.weather.com)

The calculation for the heat lost through the exterior walls involves the overall change in temperature from the interior to the exterior, the area of the wall, and the overall U-value of all the wall layers. The U-value for each system was found with a software program called *Carrier Hourly Wall Analysis*. The calculations can be found in Appendix 4.

n ll Details Outside Surface Color Necentricity	Light				
Absorptivity Overall U-Value	0.450	BTU//hr-ft²-⁰F	n		
all Layers Details (Inside to Outside)					
in Layer's Details (inside to Outside)	Thickness	Density	Specific Ht.	R-Value	Weight
Layers	in	lb/ft3	BTU / (Ib - ⁰F)	(hr-ft²-°F)/BTU	lb/ft²
Inside surface resistance	0.000	0.0	0.00	0.68500	0.0
Gypsum board	0.500	50.0	0.26	0.44803	2.1
Gypsum board					
Air space	0.000	0.0	0.00	0.91000	0.0
71	0.000 6.000	0.0 0.5	0.00 0.20	0.91000	0.0
Air space					
Air space R-13 batt insulation	6.000	0.5	0.20	19.23077	0.3

A comparison of the two systems show the heat loss for the alternate system is twice as large as the one for the original. The larger thickness of insulation in the original system significantly increased the overall thermal resistance of the wall. The U-value for the alternate system can be decreased with the replacement of the R-13 insulation with a higher R-value insulation. Increasing the thickness of the insulation, and therefore the wall, may be an unwelcome option.

Summary & Conclusion

The purpose of this thesis was to take Wellington's use as a retirement community into account and design a system constructed of a less combustible material. Pre-cast concrete hollowcore planks were chosen for the floor system due to the fire resistance and ease of construction. To size the planks, the Nitterhouse load tables were used after an allowable load and span were chosen. It was determined the 12"x4' SpanDeck with 2 inch topping was sufficient for all three residential floors and the same plank without topping for the roof system. The first floor framing was then designed to have square concrete columns supporting the beams that would hold the planks. LRFD was used to design the first beam, as shown in a sample calculation in Appendix 2, and a spreadsheet was set up to design the rest of the beams on the first level. The concrete columns were sized by choosing one column that received the highest load and had the largest tributary area and choosing a size and reinforcement from the *CRSI Handbook*. The chosen column was a square tied 14"x14" with 4-#10s.

Masonry walls were chosen to support the planks on the residential floors above the garage. The interior bearing walls were lined up with the columns in the garage in the alternate design because of the need for improved stability in the structure. Empiracal masonry design along with a spreadsheet was used to size the walls. The results were 8" CMU exterior walls and 6" CMU interior and partition walls.

The foundation wall was designed assuming the full height of the wall retained soil. It was also assumed that there was no cohesion or surcharge present in the soil. The final design was a 12" concrete wall with #7's at 12 inches.

An acoustical analysis of the floor system between the garage and first floor showed that the alternate system design was a better acoustic barrier than the original. The heat loss calculation performed showed that the original system was better than the alternate. The purpose of these analyses was to determine which design offered a better standard of living to the retirees. The results were mixed as both designs had their strong points. The alternate design offers more resistance to fire and better acoustical properties, while it is less efficient considering heat loss.

References

AISC Committee on Manuals and Textbooks (Eds.)(2003). Manual of Steel Construction:

Load and Resistance Factor Design (3rd ed.). United States of America.

American Society of Civil Engineers (Eds.)(2003). Minimum Design Loads for Buildings and

Other Structures: ASCE 7-02. (Revision of ASCE 7-98). United States of America.

Concrete Reinforcing Steel Institute (2001). CRSI Design Handbook (9th ed.). United States of America.

- Egan, M. David, Architectural Acoustics. (1988) McGraw-Hill, Inc., New York. Architectural Acoustics.
- Nitterhouse.com. Last retrieved March 31, 2006, from http://www.nitterhouse.com.

BeavertownBlock.com. Last retrieved March 31, 2006, from http://www.beavertownblock.com

Credits/Acknowledgements

I would like to thank the following people...

Greg Del Nero at MSL Associates for providing me with Wellington's information.

Mike Merwin from East Goshen Township for providing the zoning and building codes for Wellington.

Patrick Vander Neut from Sebastian & Sons, Inc. for all the mechanical information.

Philip Moss from P.W. Moss & Associates for all the structural information and help.

Professor Boothby, my faculty consultant, for pushing me to do things he believed I could do from the beginning.

Professor Parfitt, for patiently explaining everything.

Professor Hanagan for answering my questions without even knowing my building.

Jeff Kobilka, my boyfriend, for his support and help with my report.

And **Katia & Nick Drabousky,** my parents, for their support as well as the electrical information from my dad, the electrical contractor for Wellington.

Calculations, spreadsheets, & tables used in this thesis study.

Appendix 1: Gravity Loads – Alt. System – ASCE 7-02

Live Loads (ASCE 7 -02 Table 4-1):

Roof:	20 psf

Private Rooms & the corridors that serve them: 40 psf

Dead Loads (used for Seismic load):

Hollowcore Roof:	Ceiling	1 psf			
	MEP	10 psf	<u>Steel +</u>		
	Hollowcore	77.5 psf	Hollowcore Floors:	Carpet	1 psf
	Total:	88.5 psf		Ceiling	1 psf
Hollowcore Floors:	Carpet	1 psf		MEP	10 psf
	Ceiling	1 psf		Steel	10 psf
	MEP	10 psf		Hollowcore	102.5 psf
	Hollowcore	102.5 psf		Total:	124.5 psf
	Total:	114.5 psf			

Snow Load (ASCE 7 -02):

$$p_f = 0.7 C_e C_t I p_g$$

 $C_e = 0.7$ (table 7-2)

 $C_t = 1.0$ (table 7-3)

I = 1.1 (table 7-4)

 $p_g = 30 \text{ psf}$

 $p_f = 0.7 (0.7)(1.0)(1.1)(30 \text{ psf}) = 16.17 \text{ psf} < p_f = 20I = 22 \text{ psf}$

Therefore, $p_f = 22 psf$

Appendix 2: Depth Study Calculations

First Floor Framing

Largest hollowcore plank span = 36'-0"

LL = 40 psf

Superimposed dead load:	MEP	10 psf
	Ceiling + Carpet	2 psf
	Partition walls	20 psf
	Total:	32 psf

 $w_u = 1.2(32 \text{ psf}) + 1.6(40 \text{ psf}) = 102.4 \text{ psf}$

From Nitterhouse Hollowcore Load Tables

Span = 36'-0"

Allowable Superimposed Load (psf):

flexure $6 - \frac{1}{2}$ " $\emptyset = 104 \text{ psf} > 102.4 \text{ psf}$

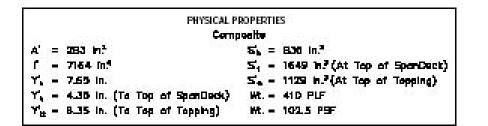
shear $6 - \frac{1}{2}$ " $\emptyset = 136 \text{ psf} > 102.4 \text{ psf}$

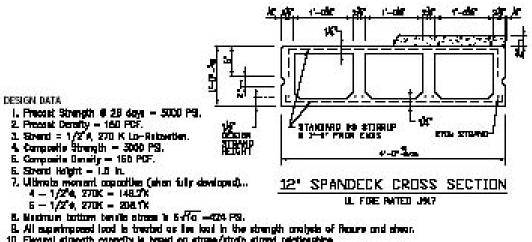
*Use 12" x 4' SpanDeck – U.L. – J917 w/2" topping

*For all floors. Roof will use same size w/o topping.

Design Beams w/LRFD

Example Calculation – Beam 1


Span = 22'-8", Tributary width = 23.96' Plank weight = (102.5 psf * 3 floors) + 77.5 psf (roof) = 385 psf Interior masonry bearing wall weight = 62 psf (10')*(2 floors) + 62 psf (11') = 1922 plf $w_u = 1.2[((385+27)*23.96') + 1922 plf] + 1.6(40psf)(23.96') = 15685.664 plf (factored)$ $w_u = ((385+27)*23.96') + 1922 plf + (40psf)(23.96') = 12751.92 plf (unfactored)$


 $M_{u} = wL^{2}/8 = [15685.664 \text{ plf } (22.67')^{2}]/8 = \underline{1007664.506' \text{lb}} = \underline{1007.66' \text{k}}$ $V_{u} = wL/2 = [15685.664 \text{ plf } (22.67')]/2 = \underline{177797 \text{lb}} = \underline{177.8 \text{k}}$

For $\Delta_{\text{max}} = 1/240$, $I_{\text{req'd}} = [5(12.752\text{klf})(22.67')^4(12\text{in/ft})^3]/[384(29,000\text{ksi})(1.1335'')] = 2305.41 \text{ in}^4$ Use W30x90 (table 5-3, AISC LRFD Manual of Steel Construction)

Prestressed Concrete 12"x4' SpanDeck-U.L.-J917 (2" C.UP. TOPPING)

 Fixurel strangth capacity is based on strang/strain strand relationships.
 Load values to the left of the solid line are controlled by vitimate strangth. Load values is the right are controlled by contrast virtues.

- Shear values are the maximum allowable before shear reinforcement is required.
 Definition finite wave not considered when determing allowable loads in this table.

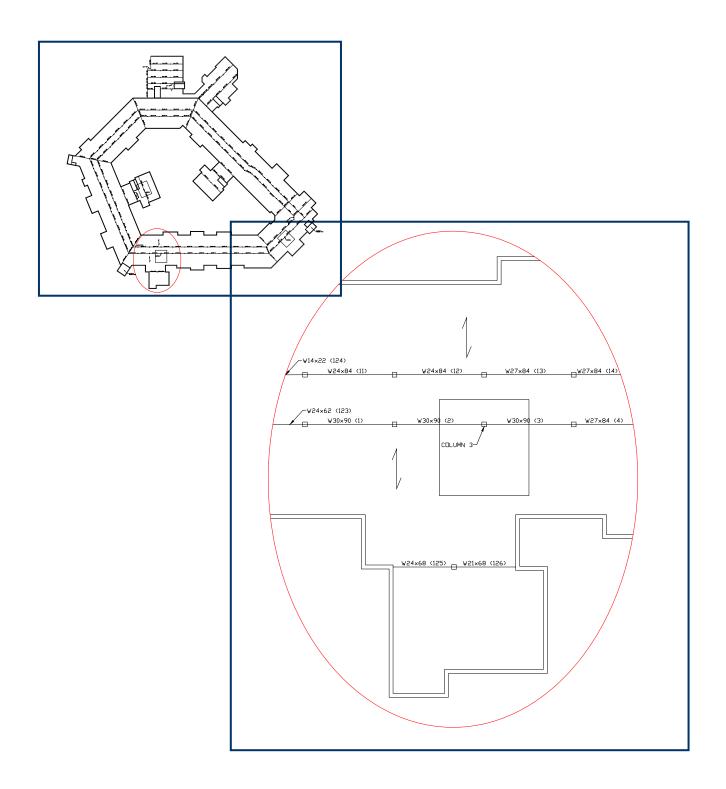
14. All leads sheen refer to allowable laads applied after the beging has herdened.

		12	SPAND	ECK!	8/2.	lorr-	NG .		0				ALL	OWN	ate s	uro	aMh	ossp	LON	0162	E)					
1200	2.2		2 B					2	22	2	222	2	100	378	8 <i>6</i> 4	IT)					95		222	2 3	022	2
STRAN	W TA	THE STATE	*	18	19	20	21	22	27	24	22	26	27	24	20	30	Л	72	33	34	35	35	37	29	30	+6
fierere -	्म	-	1/21		392	213	303	271	240	214	190	טע נ ו	131	h34	120	100	P 4	13	79	94		-			~	F
Shear 👘	4	-	1/21	-151	100	179	766	339	309	261	257	234	214	185	181	172	192	148	18	125	1	١				
Fleener	ų.	-	1/21	F7	660	027	ත	121	376	04C	507	277	201	2.27	200	TET	ם או	104	140	127	110	191	P †	80	76	E
Shear		-	1/2 8	483	423	387	373	3.01	3.81	313	2.87		2.00	2.00	9.37		201	1.550	171	164	148	3	124	11.8	115	10

This table is for simple spare and uniform loads, design data for any of these spar-load conditions is ovailable on request individual designs may be furnished to estimate conditions of heavy leads, concentrated loads, cestimers, targe or starm openings and normal whither.

2635 MOLLY PITCHER HWY, SOLTH, BOX N CHANDERSBURG, PA 17801-0003 717-267-4903 · FMI: 737-267-4318

NEWER TAKES



Section of First Floor - Alternate System

Beam #	Span (ft)	Trib Width (ft)	w (lb/ft) factored	w (k/ft) factored	Mu ('k)	Vu (k)
1	22.67	23.96	15685.664	15.685664	1007.664506	177.7970014
2	22.67	23.96	15685.664	15.685664	1007.664506	177.7970014
3	22.67	23.96	15685.664	15.685664	1007.664506	177.7970014
4	22.67	20.125	13544.2	13.5442	870.0944759	153.523507
11	22.67	17.625	12148.2	12.1482	780.4138829	137.699847
12	22.67	17.625	12148.2	12.1482	780.4138829	137.699847
13	22.67	20.625	13823.4	13.8234	888.0305945	156.688239
14	22.67	20.625	13823.4	13.8234	888.0305945	156.688239
123	18.17	20.12	13541.408	13.541408	558.8351195	123.0236917
124	9.8	13.6	9900.64	9.90064	118.8571832	48.513136
125	15.42	33.875	21222.2	21.2222	630.7672895	163.623162
126	15.58	30.875	19547	19.547	593.0960514	152.27113

w (lb/ft) (unfactored)	w (k/ft) (unfactored)	L/240	L/360	I req'd	Designed Beam
12751.92	12.75192	1.1335	0.755666667	2305.391331	W30x90
12751.92	12.75192	1.1335	0.755666667	2305.391331	W30x90
12751.92	12.75192	1.1335	0.755666667	2305.391331	W30x90
11018.5	11.0185	1.1335	0.755666667	1992.010174	W27x84
9888.5	9.8885	1.1335	0.755666667	1787.719981	W24x84
9888.5	9.8885	1.1335	0.755666667	1787.719981	W24x84
11244.5	11.2445	1.1335	0.755666667	2032.868213	W27x84
11244.5	11.2445	1.1335	0.755666667	2032.868213	W27x84
11016.24	11.01624	0.9085	0.605666667	1025.445743	W24x62
8069.2	8.0692	0.49	0.326666667	117.8482731	W14x22
17233.5	17.2335	0.771	0.514	980.4853873	W24x68
15877.5	15.8775	0.779	0.519333333	931.749133	W21x68

Concrete Column Design

<u>Column 3 Example Design</u> Tributary width = 24.21' Tributary area = 548.72 ft²

Roof loads: plank, walls, + gravity

DL = 77.5 psf(24.21') + 62 psf (11') = 2558.275 plf SL = 22 psf(24.21') = 532.62 plf LL = 20 psf(24.21') = 484.2 plf Total = 1.2D + 1.6L + 0.5S = 4164.222 plf (22'-8") = 94389.032 lb = **94.4 k**

 2^{nd} & 3^{rd} floor loads: plank, walls, + gravity

DL = (27 + 102.5)(24.21') + 62 psf (10') = 3755.195 plf LL = 40psf (24.21') = 968.4 plf Total = 1.2D + 1.6L = 6055.674 plf (22'-8") = 137261.944 lb = **137.3 k**

 1^{st} floor loads: plank + gravity

DL = 27 psf + 102.5 psf = 129.5 psfLL = 40 psf $Total = 1.2D + 1.6L = 219.4 \text{ psf} (548.72 \text{ ft}^2) = 120389.168 \text{ lb} = 120.4 \text{ k}$

Load from beams:

90 plf (22'-8") = 2040 lb = **2.04** k

Total point load on column 3 = 94.4 + 137.3(2) + 120.4 + 2.04(2) = 493.48 k

Column Design: 14" x 14" SQUARE TIED COLUMN WITH 4-#10's

Wellington at Hershey's Mill

Bars s	symmet	rical in	4 faces	1	- Sian	adateuriter Lateuriteri				M in in	ch-kips	s φPi	n kips	Ze
BARS	RHO	Max	Сар	0%	fy	25%	b fy	50%	6 fy	100%	% fy	.1f _c	Ag	Ax
	r". Lints :	ϕ M	ϕ P	фМ	φP	φм	φP	φМ	ϕ P	φм	φP	фМ	фР	Lo ¢
4-# 5 4-# 6 4-# 7 4-# 8 4-# 9 4-#10 4-#11	1.24 1.76 2.40 3.16 4.00 5.08 6.24	215 223 233 244 255 269 277	230 246 266 291 317 351 388	335- 363 397 435 472 516 538	183 192 203 217 231 248 260	378 410 447 488 530 580 601	152 158 164 172 180 190 193	396 432 474 521 569 626 648	127 129 131 134 136 138 132	409 454 507 565 625 697 723	86 81 75 67 57 44 20	315 371 438 513 592 689 710	40 40 40 40 40 40 40	
8-# 5 8-# 6 8-# 7 8-# 8	2.48 3.52 4.80 6.32	220 230 244 260	269 302 343 391	369 411 461 517	207 226 250 277	420 468 524 585	169 181 195 211	445 500 563 633	136 142 148 155	471 540 619 707	79 70 59 44	420 502 597 703	40 40 40 40	
	nadin a		liete	SQU	ARE	TIED C	OLUN	MNS 1	2" × 1	2″	ulij ber		an a	alu.co
4-# 6 4-# 7 4-# 8 4-# 9 4-#10 4-#11 4-#14	1.22 1.67 2.19 2.78 3.53 4.33 6.25	380 395 412 430 451 465 511	330 350 374 401 435 472 559	570 618 673 732 804 870 1031	272 283 296 311 331 349 400	663 721 787 859 947 1002 1173	228 236 245 256 270 277 306	714 779 854 932 1027 1086 1280	192 196 201 206 212 210 219	750 832 925 1023 1142 1215 1459	134 130 124 118 109 92 62	561 654 760 874 1016 1133 1449	58 58 58 58 58 58 58 58	111
8-# 5 8-# 6 8-# 7 8-# 8 8-# 9 8-#10	1.72 2.44 3.33 4.39 5.56 7.06	375 392 412 436 462 494	353 386 426 474 528 596	576 635 706 787 873 980	288 308 331 360 392 432	674 746 832 931 1037 1169	239 253 270 290 313 341	728 814 912 1024 1140 1283	200 208 217 227 237 255	773 877 1000 1140 1287 1467	134 128 121 112 101 85	646 766 905 1062 1227 1430	58 58 58 58 58 58	1 1 1 1
	and and a second se		1	SQL	JARE	TIED (COLUI	MNS 1	4″ × 1	4″	Alternational			
4-# 7 4-# 8 4-# 9 4-#10 4-#11 4-#14	1.22 1.61 2.04 2.59 3.18 4.59	615 640 665 695 716 781	449 473 500 534 571 658	896 968 1045 1141 1235 1454	379 392 407 426 444 494	1062 1149 1242 1358 1464 1733	317 327 338 352 364 400	1155 1257 1368 1507 1619 1912	268 274 281 289 294 310	1246 1375 1512 1682 1804 2172	191 188 183 177 164 143	918 1055 1204 1390 1554 1984	78 78 78 78 78 78 78	1112
8-# 5 8-# 6 8-# 7 8-# 8 8-# 9 8-#10 8-#11	1.27 1.80 2.45 3.22 4.08 5.18 6.37	587 612 640 672 707 751 783	452 485 525 573 627 695 769	840 916 1007 1112 1225 1367 1500	385 405 429 458 490 531 570	1000 1092 1203 1332 1470 1644 1800	322 336 354 374 397 427 454	1084 1193 1325 1479 1644 1852 2020	272 281 291 303 317 335 346	1162 1303 1472 1666 1871 2127 2313	196 192 188 183 175 165 142	925 1086 1273 1485 1708 1985 2210	78 78 78 78 78 78 78 78	
	112 (data ja 10)		at		. **	No				£ .		(s. 16) 	tru-	

2nd & 3rd floors - Masonry Empirical design

Exterior Bearing Walls

Floor level	Plank size	self- weight	Total DL	Snow	LL	load (wall above)	Load (supported)	Estimated wall	Wall load	A/ft	Wall stress
								weight		(in^2	
supported	(in)	(psf)	(psf)	(psf)	(psf)	(plf)	(plf)	(plf)	(plf)	/ ft)	(psi)
roof	12	77.5	92.5	22	20	-	3194.375	840	4034.38	128	31.51855
3	12+2	102.5	117.5		40	4034.375	3740.625	840	8615	128	67.30469
2	12+2	102.5	117.5		40	8615	3740.625	840	13195.6	128	103.0908

Average Tributary Width: 23.75'

Design: 8" grouted CMU (2500 psi), Type N Mortar (140 psi max wall stress)

Interior Bearing Walls

Floor	Plank	self-	Total			load (wall	Load	Estimated	Wall		Wall
level	size	weight	DL	Snow	LL	above)	(supported)	wall	load	A/ft	stress
								weight		(in^2	
supported	(in)	(psf)	(psf)	(psf)	(psf)	(plf)	(plf)	(plf)	(plf)	/ ft)	(psi)
roof	12	77.5	92.5	22	20	-	3228	620	3848	96	40.08333
3	12+2	102.5	117.5		40	3848	3780	620	8248	96	85.91667
2	12+2	102.5	117.5		40	8248	3780	620	12648	96	131.75

Average Tributary Width: 35.75'

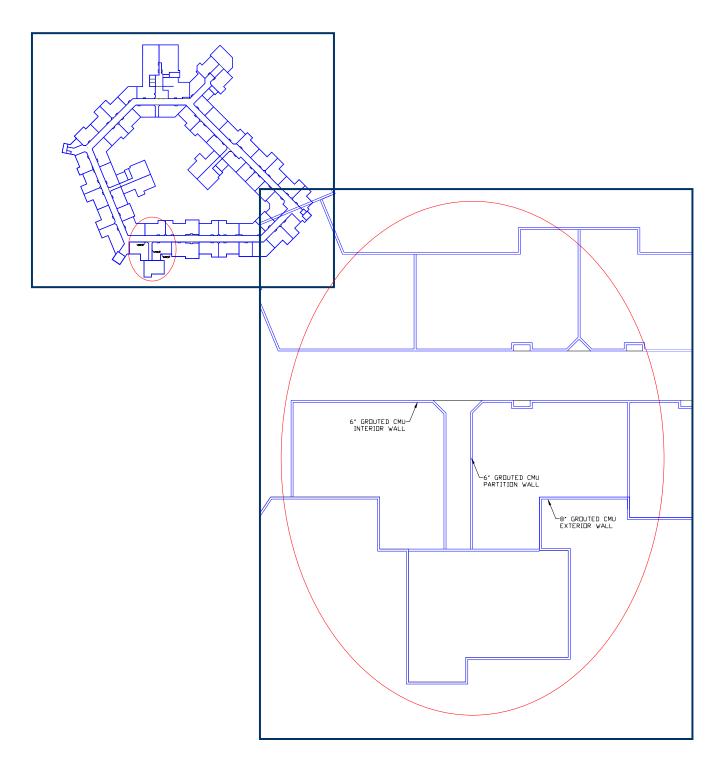

Design: 6" grouted CMU (4500 psi), Type N Mortar (200 psi max wall stress)

Table 1—Wall Lateral	Suppor	t Requir	ements (1	ref. 1)	Table 3—Allowable C	-	
			um wall le mess or he		Empirical Design	Allowable compr	ŕ
Construction			icknessra			based on gross (
Bearing walls					1	area, psi (l	√IPa) ^(₄)
Solid or solid grouted			20		Gross area compressive	Type M or S	Type N
All other			18		strength of unit, psi (MPa)	mortar	mortar
Nonbearing walls					Solid concrete brick:		
Exterior			18		8000 (55) or greater	350 (2.41)	300 (2.07)
Interior			36		4500 (31)	225 (1.55)	200 (1.38)
Cantilever Walls ^(b)					2500 (17)	160 (1.10)	140 (0.97)
Solid			6		1500 (10)	115 (0.79)	100 (0.69)
Hollow			4		Grouted concrete masonry:		
Parapets (8-in. (203-mm) ti	hick min.)	(⁶)	3		4500 (31) or greater	225 (1.55)	200 (1.38)
			_		2500 (17)	160 (1.10)	140(0.97)
(a) Ratios are determined					1500 (10)	115 (0.79)	100 (0.69)
multiwythe walls when					Solid concrete masonry units:		
headers, the thickness					3000 (21) or greater	225 (1.55)	200 (1.38)
multiwythe walls are b		-			2000 (14)	160 (1.10)	140(0.97)
ness is taken as the su		-			1200 (8.3)	115 (0.79)	100 (0.69)
^(b) The ratios are maximum	n height-	to-thickn	ess ratios	and do	Hollow concrete masonry unit		
not limit wall length.					2000 (14) or greater	140 (0.97)	120 (0.83)
Table 2 Mari		all Gran	- 0 ()		1500 (10)	115 (0.79)	100 (0.69)
Table 2—Maxi	mum vv	ап эћач	s, 11 (m)		1000 (6.9)	75 (0.52)	70 (0.48)
Wall thickness, in. (mm)	6 (1 52)	8 (203)	10 7254	12 (305)	700 (4.8)	60 (0.41)	55 (0.38)
Bearing walls	, - ()	- (200)			Hollow walls (noncomposite		
Solid or solid grouted	1073000	133741)	166 (51)	20 (6 1)	masonry bonded ^(b)		
All other			15 (4.5)		solid units:		
Nonbearing walls	2 (2. I)	12 (0.7)	15 (4.5)	10 (0.0)	2500 (17) or greater		140(0.97)
Exterior	007	12 (2 7)	15 (4.5)	18 (5 5)	1500 (10)	115 (0.79)	100 (0.69)
Interior		24 (7.3)			hollow units	75 (0.52)	70(0.48)
Cantilever Walls ^(b)	10 (0.0)	24 (7.3)	50 (9.1)	50(11)	(a) I in a printernalation for inter	madiata maluas a	faomoroaaisso
Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)	^(a) Linear interpolation for inter strength is permitted.	methate values 0	i compressive
Hollow				4 (1.8)	(b) Where floor and roof loads	are carried on o	ne wythe, the
			3.3 (1.0)		gross cross-sectional area is		
Parapets ^(b)	1.5 (0 <i>5</i>)	2 (0.6)	2.5 (0.8)	3 (0.9)	if both wythes are loaded, th		
∞ 6-in. (152-mm) thick be in height.	aring wa	alls are lin	mited to c	ne story	that of the wall minus the a wythes. Walls bonded with	rea of the cavity metal ties shall	y between the be considered
^(b) For these cases, span:	s are max	cimum we	all heights		as noncomposite walls unle mortar or grout.	ess collar joints	are filled with

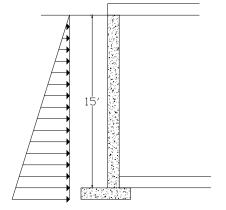
Section of First Floor - Alternate System

Foundation Wall Design

Floor height = $15' > 8' + \text{Rigid Diaphragm} \rightarrow \text{use} @ \text{Rest}$ $\gamma_E = 57 \text{ pcf}$ $\gamma = 125 \text{ pcf}$ $k_o \gamma = \gamma_E \rightarrow k_o = 57 \text{ pcf}/125 \text{ pcf} = 0.46$ $k_o = 1 - \sin \phi \rightarrow \phi = 32.7^\circ$

Design at full height retainage

Assumptions: no cohesion or surcharge


 $P_{max} = 125 \text{ pcf } (0.46)(15') = 862.5 \text{ psf}$ $V_{max} = 2/3 (862.5(15'))/2 = 4312.5 \text{ plf}$ $V_u = 4312.5 \text{ plf } (1.6) = 6900 \text{ lbs} = 6.9 \text{ k}$ $M_{max} = 862.5 \text{ psf } (15')^2/(9\sqrt{3}) = 12449.12' \text{ lbs}.$ $M_u = 12449.12' \text{ lbs } (1.6) = 19918.6' \text{ lbs} = 19.9' \text{ k}$

Unreinforced Cross Section

ø $M_n = ø5√f_c^2S$ 19.9'k(12"/ft)(1000) ≤ 0.55(5)√3000(S_x) S_x = 1585.41 in³ → S_x = bh²/6 = 12h²/6 h = 28.16" → too large, reinforce wall

$$\begin{split} & \underline{\text{With Reinforcing}} \\ & 6900 = 0.75(2)\sqrt{3000(12)} \text{d} \rightarrow \text{d} = 6.999^{"} \approx 7" \\ & \text{Try h} = 12" \\ & \text{d} = 12\text{-}1.5\text{-}0.25 = 10.25" \\ & 19.9'\text{k}(12''/\text{ft}) = 0.9\text{A}_{\text{s}}(60)(10.25'' - 1.96\text{A}_{\text{s}}/2) \\ & 238.8''\text{k} = 553.5\text{A}_{\text{s}} - 211.68\text{A}_{\text{s}}2 \rightarrow \text{A}_{\text{s}} \ge 0.545 \text{ in}2 \\ & \text{Try } \#7\text{s} @ 12'' \rightarrow \text{A}_{\text{s}} = 0.60 \text{ in}2 \\ & \text{a} = 1.96(0.60) = 1.176'' \\ & \text{c} = 1.176''/0.85 = 1.38'' \\ & \epsilon_{\text{s}} = 0.003/1.38(10.25\text{-}1.38) = 0.0192 > 0.005 \rightarrow \text{OK} \end{split}$$

Use 12" concrete wall with #7s @ 12"

Appendix 3: Acoustic Analysis Calculations

Alternate System

			Sound Al	osorption		
Surface	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
400 ft ² ceiling, concrete	4	4	8	8	8	8
400 ft ² floor, carpet, heavy, on foam rubber	32	96	228	276	284	292
800 ft ² walls, gypsum board, 1 layer 5/8" thick (screwed to 1x3s, 16 oc with airspaces filled with fibrous insulation)	<u>440</u>	<u>112</u>	<u>64</u>	<u>32</u>	<u>96</u>	<u>88</u>
a ₂ (sabins):	476	212	300	316	388	388

Original System

			Sound Al	osorption		
Surface	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
400 ft ² ceiling, gypsum board, 1/2 in thick	116	40	20	16	28	36
400 ft ² floor, carpet, heavy, on foam rubber	32	96	228	276	284	292
800 ft ² walls, gypsum board, 1/2" thick (nailed to 2x4s, 16 in oc)	232	80	40	32	56	72
a ₂ (sabins):	380	216	288	324	368	400

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Assuming the loudest noise to come from the garage would be a car stereo, the sound pressure level from the garage is:	72	83	82	82	80	75
Minus Background level in Apartments, RC-30:	45	40	35	30	25	20
Req'd NR (dB):	27	43	47	52	55	55
<u>Alternative</u>						
Minus 10log a ₂ /S:	0.755469614	-2.75724	-1.24939	-1.02373	-0.13228	-0.13228
Req'd TL (dB):	26.24453039	45.75724	48.24939	53.02373	55.13228	55.13228
<u>Original</u>						
Minus 10log a ₂ /S:	-0.22276395	-2.67606	-1.42668	-0.91515	-0.36212	0
Req'd TL (dB):	27.22276395	45.67606	48.42668	52.91515	55.36212	55

Comparison

<u>Alternative</u>

4 in reinforced concrete slab (54 lb/ft²) (actual system: hollowcore plank system)

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Req'd TL (dB):	26.24453039	45.75724	48.24939	53.02373	55.13228	55.13228
System TL (dB):	48	42	45	56	57	66

<u>Original</u>

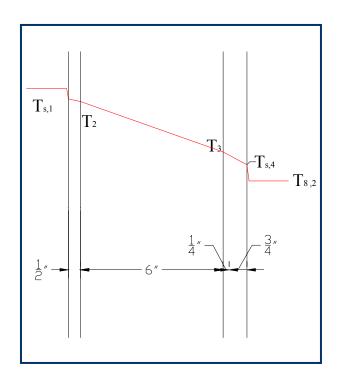
18 in steel joists 16" o.c. with 1 5/8" concrete on 5/8 in plywood under heavy carpet laid on pad, and 5/8 in gypsum board attached to joists on ceiling side (20 lb/ft²)

(actual system: 18 in steel joists 16" o.c. with 4" concrete slab, heavy carpet laid on pad and gypsum board attached to joists on ceiling side)

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Req'd TL (dB):	27.22276395	45.67606	48.42668	52.91515	55.36212	55
System TL (dB):	27	37	45	54	60	65

Appendix 4: Building Envelope Analysis Calculations

Heat Transfer Rate (Heat loss)


Assumptions:

1-dimensional Steady state Constant properties

Original System

Wall area (A) = 100 ft² $T_{\infty,1} = 65^{\circ}F, \quad T_{\infty,2} = 21^{\circ}F$ $\Delta T = 44^{\circ}F$ U = 0.046 BTU/(hr-ft²-°F)

$q_x = UA\Delta T = 0.046(100)(44) = 202.4 BTU/hr$

ll Details					
Dutside Surface Color	Light				
sbsorptivity Verall U-Value	0.450				
Overall U-Value	0.046	BTU/(hr-ft²-°F)		
	Thickness				
avers		Density Ib/ff*		R-Value (br-ft²-ºEVBTU	Weight Ib/#12
Layers Inside surface resistance	0.000	-	Specific Ht. BTU / (lb - ºF) 0.00		Weight Ib/ft² 0.0
2	in	lb/ft'	BTU / (lb - ⁰F)	(hr-ft²-°F)/BTU	lb/ft²
Inside surface resistance	in 0.000	lb/ft ³ 0.0	BTU / (Ib - ºF) 0.00	(hr-ft²-°F)/BTU 0.68500	lb/ft ² 0.0
Inside surface resistance Gypsum board	in 0.000 0.500	1b/ft ³ 0.0 50.0	BTU / (lb - ºF) 0.00 0.26	(hr-ft ² -°F)/BTU 0.68500 0.44803	110/ft ² 0.0 2.1
Inside surface resistance Gypsum board Air space	in 0.000 0.500 0.000	lb/ft ³ 0.0 50.0 0.0	BTU / (lb - °F) 0.00 0.26 0.00 0.20	(hr-ft ² -%F)/BTU 0.68500 0.44803 0.91000	1b/ft ² 0.0 2.1 0.0
Inside surface resistance Gypsum board Air space R-13 batt insulation	in 0.000 0.500 0.000 6.000	lb/ft ³ 0.0 50.0 0.0 0.5	BTU / (lb - °F) 0.00 0.26 0.00 0.20	(hr-ft ² -°F)/BTU 0.68500 0.44803 0.91000 19.23077	Ib/ft ² 0.0 2.1 0.0 0.3

<u>Alternate System</u>

Wall area (A) = 100 ft² $T_{\infty,1} = 65^{\circ}F, \quad T_{\infty,2} = 21^{\circ}F$ $\Delta T = 44^{\circ}F$ U = 0.109 BTU/(hr-ft²-°F)

$T_{8,1}$ T_{2} T_{4} $T_{5,5}$ $T_{8,2}$ T_{4} $T_{5,5}$ $T_{8,2}$

$q_x = UA\Delta T = 0.109(100)(44) = 479.6 BTU/hr$

all Details					
Outside Surface Color	Light				
Absorptivity	0.450				
Overall U-Value	0.109	BTU/(hr-ft²-°F)		
nll Layers Details (Inside to Outside)					
In Engers becaus (marie to outside)	Thickness	Density	Specific Ht.	R-Value	Weight
Layers	in	lb/ft ³	BTU/(Ib-ºF)	(hr-ft²-°F)/BTU	lb/ft²
In state as where a westerness a	0.000	0.0	0.00	0.68500	0.0
Inside surface resistance	0.000	0.0	0.00	0.00500	0.0
Inside surface resistance Gypsum board	0.000	50.0	0.00	0.44803	2.1
Gypsum board					
	0.500	50.0	0.26	0.44803	2.1
Gypsum board R-13 batt insulation	0.500	50.0 0.5	0.26	0.44803 6.41026	2.1
Gypsum board R-13 batt insulation 8-in HW concrete block	0.500 2.000 8.000	50.0 0.5 61.0	0.26 0.20 0.20	0.44803 6.41026 1.11111	2.1 0.1 40.7

Nicole C. Drabousky Structural Option