

Nicole Drabousky Structural Option Thomas E. Boothby Wellington at Hershey's Mill West Chester, Pennsylvania 10/5/2005

Structural Technical Report 1

Executive Summary

Wellington at Hershey's Mill is a retirement community consisting of 197 residential units on the top three floors and a garage level below them. Wellington is five stories with the number of stories above grade alternating around the perimeter of the building. The lower and lobby levels are separate from the residential section and contain the businesses in connection with Wellington. Wellington is 370,000 square feet and located off a prominent road in West Chester, Pennsylvania.

This report consists of an assessment of the structural system and explores the structural design concepts that may have been used in the design of Wellington. The 2000 International Building Code is the basis of the building design but I will be using ASCE 7-02 for my calculations. The design codes are as

follows:

Structural Steel	AISC- "Specifications for Structural Steel Buildings"
Reinforced Concrete	ACI 318- "Building Code Requirements For Reinforced Concrete"
	ACI 301- "Specifications For Structural Concrete"
<u>Masonry</u>	ACI 530- "Building Code Requirements For Masonry Structures"
	ACI 530.1- "Specifications For Masonry Structures"
<u>Lumber</u>	1996 BOCA National Building Code
Foundations	In accordance with a geotechnical report prepared by Earth
	Engineering, Inc. dated January 29, 2003

The structural system is a combination of many structural materials. The foundation is slab on grade with strip footings in the exterior, spread footings in the interior, and a cmu foundation wall. The lobby floor and roof and first floor framing is steel joists bearing on girders on steel columns. The second and third floors are 2x6 wood framing with open web wood trusses bearing on the walls. The roof framing is similar to the second and third floor except for slightly sloped wood roof trusses. Wood framed gypsum shear walls and masonry towers located at the elevator shafts and stairwells make up the lateral load resisting system.

The exterior walls of the lower and lobby levels as well as the garage level are cmu block with a conventional red stucco finish for the parts of the wall above grade. The first through third floors' exterior walls are 2x6 wood studs framing with two layers of white stucco finish over wood sheathing.

A spot check was performed on the first floor steel framing and the third floor wood framing. The spot check of a steel girder and steel column resulted in different sizes than the actual design. This could be due to incorrect loading assumptions and calculations. The spot check on the steel joist, wood truss, and wood stud bearing wall all resulted in the same sizes as designed. After a lateral load distribution was performed, the masonry towers were determined to be sufficient for the top levels and the shear walls were not checked. Two towers on the lower levels were found to be inadequate for the lateral loading. This could be due to incorrect calculations or assumptions.

Summary of Overall Structural System

Load Path

For the steel framing, the floor slab is supported by the steel joists, the steel joists bear on steel girders and exterior cmu walls, and the girders sit on the steel columns. In the wood framing, the joists support the wood sheathing and bear on the wood framed walls.

Building Geometry

The lobby and lower level are almost a separate section from the residential. The lobby is located directly over the lower level and is close to the elevation of the garage level which is the level beneath the three residential floors. A branch of the first through third floors is above the lobby, but the rest of the lobby ends at the first floor level.

Foundation (Lower Level & Garage Level)

Wellington's foundation consists of a 12" CMU foundation wall with 2' wide strip footings and 4" slab on grade with 6x6-W2.0xW2.0 WWF over 2-4" porous fill. The interior steel columns sit on concrete spread footings ranging in size from 3'x3' to 4'-6"x4'-6". There are two pier sizes in the foundation; 18"x18" and 20"x20".

Lobby Floor & Roof Framing

A 4" concrete slab is over a 1-1/2" 20 GA. Type B, wide rib metal deck, manufactured by Vulcraft, with 6x6-W2.9xW2.9 WWF. The beams range in size from W8's to W16's and the joists from 12K to 24K and a section with JS8's. There are no typical bays in the building due to the irregular shape.

Lobby Floor Framing

The lobby roof framing has the same concrete slab system as the floor framing but some different steel sizes and the framing is slightly sloped. The beams range in size from W8's to W21's and the joists are all 18KCS. Metal roof deck is installed over the beams.

Lobby Roof Framing

First Floor Framing

The first floor framing consists of a 4" concrete slab over 1-1/2" metal floor deck (galvanized) with 6x6-W2.9xW2.9 WWF. The steel beams range in size from W8's to W18's; they span over the corridor. The joists range from 10K's to 18K's and is the framing system for the rest of the areas on the first floor. Metal studs are used to frame the walls.

First Floor Framing

Second & Third Floor Framing

The framing for these two floors consist of wood framing made up of 2x8s at 16" in the corridor and TJLs, open web wood trusses, at 16" everywhere else. The floor is made up of plywood floor sheathing. There are W8x24s at the elevator shafts and stairwells. The interior bearing walls are 2x6 at 16" o.c. on either side of the corridors.

Second & Third Floor Framing

Roof Framing

The roof framing also has 2x8's at 16" o.c. in the corridors but the trusses are sloped 24" at 24" o.c. maximum. The five 1-3/4"x18" LVL's are in the same location as the second and third floors. The same size steel is present in the same locations as the second and third floors as well.

Roof Framing

Lateral Load Resisting System

Wood framed gypsum shear walls and masonry towers located at the elevator shafts and stairwells (see plan below) make up the lateral load resisting system.

Typical Shear Wall

Masonry Tower locations

Codes and Code Requirements for Gravity and Lateral load conditions

The design of the structural system of Wellington at Hershey's Mill is based on the 2000 International Building Code. For my purposes, I will be using the ASCE7-02 in my wind and seismic analysis.

The design codes are as follows:

<u>Structural Steel</u>	AISC- "Specifications for Structural Steel Buildings"	
Reinforced Concrete ACI 318- "Building Code Requirements For Reinforced Concret		
	ACI 301- "Specifications For Structural Concrete"	
<u>Masonry</u>	ACI 530- "Building Code Requirements For Masonry Structures"	
	ACI 530.1- "Specifications For Masonry Structures"	
<u>Lumber</u>	1996 BOCA National Building Code	
Foundations	In accordance with a geotechnical report prepared by Earth	
	Engineering, Inc. dated January 29, 2003	

Load Calculations and Spot Checks

The gravity loads were determined from ASCE 7-02. The live load used in the spot checks will be the 40 psf for private rooms and the corridors that serve them. The dead loads were split by floor because of the difference in materials. Appendix 1 contains the calculations.

The calculations of the wind and seismic loads were performed also in accordance with ASCE 7-02. The South-North direction was determined to be the critical direction because all five levels were exposed to the loads. The seismic loads are much larger than the wind loads and will be the controlling lateral load for the lateral resisting system check.

The lateral load distribution to the masonry towers consisted of two methods; distribution by rigidity for the rigid diaphragm of the lobby and first floor and distribution by tributary area for the flexible diaphragm of the remaining floors. For the walls that are at an angle to the shear force, the individual wall rigidities were calculated and then multiplied by the appropriate angle to find the component needed. Appendix 4 includes all of the calculations.

The wood framed gypsum shear walls were not checked because the masonry towers were found to sufficiently resist the shear force. Two towers on the first floor, though, did not have the adequate capacity for the shear stress. The towers are the only lateral resisting system on the first level, so this may be due to incorrect assumptions or calculations.

Spot checks were performed on the first floor steel framing and third floor wood framing. Calculations can be found in Appendix 5. The steel joists were checked using The New Columbia Joist Company Steel Joists and Joists Girders catalogue. An 18k9 was chosen using the calculated live and dead loads and given joist spacing. The designed steel joist was an 18k9.

A steel girder was checked using the joist weights and resultant forces on the steel girder. The chosen girder has a column at its mid-span acting as a support. The support was assumed to act as a pinned connection for the analysis. Because of this arrangement, a moment distribution was performed and resulted in a W14x61. The designed girder is a W14x34 and the difference could be due to incorrect assumptions in loading or calculations.

A steel column was checked using the calculated live and dead loads, the weights from the girder and joist, and a moment resulting from the moment distribution on the girder. A W10x33 was chosen while the designed column was a W10x45. This difference could again be due to incorrect assumption in loading and calculations.

The spot checks for the wood framing resulted in the same sizes as designed. The wood trusses were checked using the Open Web Truss manual from Trus Joist. The resulting truss is an 18" TJL truss. The NDS was used for the check of a wood stud bearing wall. Assumptions included 16" stud spacing, the studs lined up with the joists therefore each stud supports each joist. The studs were Southern Pine No. 1 non-dense. The analysis resulted in a 2x6 stud.

Conclusion

Wellington is a building made up of many structural materials and a unique shape which make it an interesting building to study. All the analyses were performed by hand and with a spread sheet instead of structural software. The main method of analysis was LRFD, but ASD was used for the wood member checks. The discrepancy from some of the spot checks shows the difference in assumptions and loads from what was actually designed. I look forward to further investigation of Wellington and its design.

APPENDIX 1: GRAVITY LOADS

\frown	
	Gravity Loads - ASCE 7-02
	Drivate Booms HODEF
	Corridors 100pst
	Stairs 100psf
	Roof 20psf
	Dead 1 rads
	Wood Framed Ceiling Ipsf
	<u>roofs</u> MED Jopsf
	wood members 5pst
	Sheathing 3pst/in · 3/8" = 1.875pst = 2pst
	Total: 18psf
	Lobby-Steel Ceiling Ipst
	Steelmembers Dist
	metalroofdeck 205f (Vulcraft website)
	Total: 23psf
	Word Framed Carpet 125F
	Floors (2:3): Ceiling Ipst
	MEP J IOpsf
	wood members 5pst
	sneathing spst/in - 14 - 2.23pst - 3pst
	Total: 20psf
	Steel Framed Carpet IPSt
	+loors (Loboy : D: Celling Ipst
\frown	steelmembers lopst
	metal floor deck 3psf (Vulcraft website)
	$4^{"}conc.slab 4^{"} \cdot \frac{1+1}{12"} \cdot 145pcf = 48.33psf = 49 psf$
7	Total: THACE

0	Snow Load Calculation - ASCE7-02	
	Pf = 0.7 CeCtIpg	
	Ce=0.7 (Table 7-2) $C_{t}=1.0$ (Table 7-3) T_{-1} (Table 7-3)	
· .	$P_g=30p_sF$	
	Pf = 0.7(0.7)(1.0)(1.1)(30psf) = 16.17psf < Pf = 20I = 22psf	
	\therefore Use $P_f = 22psf$	

APPENDIX 2: WIND CALCULATIONS

	Wind Load Analysis - ASCE 7-02						
	Method 2 - Analytical Procedure						
	Building Information						
	N-S direction: gypsum shear walls + masonrytowers E-Wdirection: gypsum shear walls + masonrytowers Location: West Chester, PA Exposure B						
	Assumption: S-N Wind pressure will control due to 5 stories of building above ground on windward side.						
	Velocity pressure (Case 1) Z(Ft) Kz (Table 6-3)						
	0-15 0.70						
	25 0.70						
	30 0.70						
	50 0.81						
	60 0.85						
	Assume Kzt = 1						
· ·	$K_d = 0.85$ (Table 6-4) V = 90 mpb (Figure 10-1)						
	Building Category III						
	$I = 1.15 \int (Table b - P)$						
	$f_z = 0.00256 \text{ K}_z \text{ K}_d \text{ V}^- \text{ L} \text{ K}_z = 0.00256(1.00)(0.85)(40) (1.15) \text{ K}_z$						
	$q_{\rm M} = \frac{58'-50}{60-50} (0.85-0.81)(20.27) + 20.27(0.81)$						
	= 17.07 psf						
	(1)						

	Extern	al Pressu	re Coefficients	5		
	Windwo	rd walls (-p=0.8			
	Leewa	rd wall: ()	1-5) L/B = 445.4	21/483.17'=	= 0.92	
		00	Cp = -0.5			
	Gust F	actor sti	Pert			
	N-S:	L=445.4'	2' B=483.17'	h = 58'		
	Estim	ate Frequ	Dency		1	
•		<u> </u>	<u> </u>	72011 5	104-	
<u></u>		+= C+ hº.	T5 (0.02) (58') ^{0.75}	L.JOH2/	100112	
		· BIGID	CTRINCTIDE			
	6=0	0.85	SINUCIURE			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	S-N Wi	ndward T	Pressure:			
	PWZ	= qzCpG	$= q_z(0.8)(0.85)$	= 0.68 gz	= 13.78Kz	
	SILLO	a mod D	vaccura ^e	•		
	J-NLE	Q, C = G = I	(17.070sF)(-0.5)	(0.85) = -	7.25DSF	
	P1h=	thet			1020 - 51	
	Z(f+)	DWZ	floor	H(t+)	Dwz (psf)	
	0-15	9.65	1	12'	9.65	
	20	9.65	2	27'	9.65	
	25	9.65	<u> </u>	<u> </u>	10.22	
	40	1047	5(BOOF)	58'	11.50	
	50	11.16	-6	00	11020	
	60	11.71				
			<u> </u>			
			$\pm 100r$	P=PWZ-	- Pih (pst)	
	11.71 Dsf	60'	S(KOUF) 4	18.81		
	11.16psf	50'	3	17.47		
	10,47psf	40'	2	16.9		
	015 0	25'	1	16.9		
	4.65pst	15'			1 · · ·	
			ja -			
No. Constant	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		(2)			
			(-)			

S-N Direc	tion				
Floor Level Height		Building Width	Wind Pressure (psf)	Wind Force (Kips)	Floor Shear (Kips)
5(					
Roof)	11'	483.17'	18.81	50	50
4	10'	483.17'	18.2	92.33	142.33
3	10'	483.17'	17.47	84.41	226.74
2	15'	483.17'	16.9	102.07	328.81
1	12'	483.17'	16.9	110.24	439.05
				Total Shear (Kips)	1186.93



Floor Shears

## **APPENDIX 3: SEISMIC CALCULATIONS**

	Circle Applier ASCG7-02
	Deismic Analysis - ADCE I-OC
	Building Information
	N=5: OUPSOIN Shear walls + Masaring shear towers.
	E-W. Oupsoin Shear dans + Musaring shear rouges
	Laurians mester, Ph
	Seismic Design Category (SDC)
	Seismic use argue -II
•	$T = 1^{25}$
	Site Classification -D
	Accelerations from maps:
	Ss=0.30
	S1 = 0.08
	Adjust for site class:
	Fa=1.45 (interpolation from table 9.4.1.2.4a)
	$F_{v} = 2.4$ (Table 9.4.1.2.46)
	$S_{HS} = FaS_{S} = (1.45)(0.30) = 0.435$
	$S_{MI} = F_V S_I = (2.4)(0.08) = 0.192$
	Design Spectral Response Acceleration Farailleters
	$5_{DS} = 2/3 S_{MS} = 0.29$
	$S_{DI} = \frac{2}{3} S_{MI} = 0.128$
	SDC: Table 9.4.2.1a -C
	Table 9.4.2.10-0
	Analytical procedures Equivalent Lateral torce
	Anarysis permitted.
	Assume D-N Direction Controls
	Check masonly shear towers. B=2.5
	h=5.5 for internediate terminaging sites
	$ \mathbf{W}  = (1) - (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + ($
	V = wrat wardt · wardt · wistti
	BOOFDL: 18 DSF
	Ward Floor DL: 20psf
	Steel floor DL: 74psf
	Snowload: 22 psf
	Partition Load: 10psf (9.5.3)
	(1)

<u> </u>	
	From drawings:
	auq.width = 65'
	V = V = V = V = V = V = V = V = V = V =
	$Approx. area = 1000.85 \times 00 = 09340.0271$
	Add wings (areas from CADdrawing): 11,128.78ft² + 3222.63ft² + 3221.83ft² + 1654.100ft²
	Total area = 88573.42ft2 (For first - third floors)
	$Lobby (area From (AD) = 16,938.87 ft^2$
	L = 330' - 200' = 130' $B = Hb0' - 290' = 170'$
	Wrcof = [(88573.42+16,938.87)(18psf) + 10psf(5.5')(2)(130+170) + 0.2(88573.42+16,938.87)(22psf)]/1000 = 2396.48k
	$W_{LOBBY} = [16,938.87(74psf) + 10psf(13.5!)(2)(130+170)]/1000$ = 1334.5k
	$ \begin{aligned} & (w)_{15+F1} = [88573.42(74) + 10(12.5)(2)(130+170)]/1000 \\ &= (6629.43) \end{aligned} $
	$W_{2NDFI} = \frac{[88573.42(20psf) + 10psf(10)(2)(130+170)]}{1000}$ = 1831.5k
	$W_{\text{3rd}fI} = \left[ 88573.42 \left( 20\text{psf} \right) + 10\text{psf}(10.5')(2) \left( 130 + 170 \right) \right] / 1000$ = 1834.5k
	W = 2396.5k + 1334.5k + 6629.43k + 1831.5k + 1834.5k = 14026.43k
1	(2)

	T = 1.25 (Table 9.1.4)
	$T = C_{th_{p}} \times = 0.02(58')0.75 = 0.42s$ for S-N direction
	Spe 0.29
	$C_{S} = \frac{O.24}{R/I} = \frac{O.24}{3.5/1.25} = 0.104 \le CONTROLS$
	$C_{SMAX} = \frac{SDI}{D} = 0.128 = 0.100$
	T(R/I) = 0.42(3.5/1.25) = 0.1000
1	$C_{smin} = 0.044TSDs = 0.044(1.25)(0.29) = 0.016$
	$V = C_{s}W = 0.104(14026.43) = 1458.75k$
	Vertical Distribution of Seismic Forces
	Fx= CvxV: Cvx= Wxhxk
	Zwihik
<u>a</u>	
	T= 0.42s < 0.5s :: k=1
~	
	(3)

S-N Direction						
Level	wx (kips)	hx (ft)	wx*hx^1	Сvх	Fx	
5 (Roof)	2396.5	58	138997	0.28483	415.502	
4 (3rd fl)	1834.5	47	86221.5	0.17669	257.741	
3 (2nd fl)	1831.5	37	67765.5	0.13887	202.571	
2 (1st fl)	6629.43	27	178994.61	0.3668	535.066	
1						
(Lobby)	1334.5	12	16014	0.03282	47.8704	
		Ó	487992.61	1	1458.75	



### **APPENDIX 4: LATERAL LOAD DISTRIBUTION**

### Lobby Floor (Rigid Diaphragm)

- Center of Mass:  $X_{mass} = 153.43$ '
  - $Y_{mass} = 89.84'$

						Distano Zero Re	ce from ference		
Element		Area Height Unit (sf) (ft) (k/cf)			Weight X (ft) (kips) X (ft)		Y(ft)	Wx (ft*k)	Wy (ft*k)
Tower 3									
	Wall 1	6	15	0.15	13.5	195.52	27	2639.52	364.5
	Wall 2	9	15	0.15	20.25	195.52	7.16	3959.28	144.99
Tower 4									
	Wall 1	9.12	15	0.15	20.52	156.57	98.69	3212.816	2025.119
	Wall 2	13.66	15	0.15	30.735	170.85	84.42	5251.075	2594.649
	Wall 3	12.89	15	0.15	29.0025	159.05	87.02	4612.848	2523.798
	Wall 4	12.89	15	0.15	29.0025	166.01	93.97	4814.705	2725.365
	Wall 5	12.89	15	0.15	29.0025	168.24	96.21	4879.381	2790.331
Tower 5									
	Wall 1	8	15	0.15	18	131.83	120.38	2372.94	2166.84
	Wall 2	8	15	0.15	18	116.03	104.58	2088.54	1882.44
	Wall 3	14.44	15	0.15	32.49	119.92	116.49	3896.201	3784.76
	Wall 4	14.44	15	0.15	32.49	127.94	108.47	4156.771	3524.19
				4					

Ó 272.9925

41884.08 24526.98

Xm =	Ym =
ÓWx/ÓW	ÓWy/ÓW
153.4257	89.84489

• 0.3 < H/L < 3.0 for all tower walls

•

 $R/E = t(4(h/L)^3 + 3(h/L))^{-1}$ 

s cons	sider both	flexural	& shear
--------	------------	----------	---------

Element Height (ft) Length (ft) H/L Area (sf) t (in) R/E Rx Ry Tower 3 Wall 1 15 6 9 1.66667 8 149.75 149.748 0 Wall 2 15 9 9 1.66667 12 224.622 224.62 0 Tower 4 Wall 1 15 9.12 31.61 13.67 1.09729 8 44.7086 31.61 Wall 2 15 13.66 13.67 1.09729 12 67.0629 47.42 47.42 Wall 3 15 12.89 12.96 19.36 0.77479 8 18.3254 12.96 Wall 4 15 12.89 19.36 0.77479 8 18.3254 12.96 12.96 Wall 5 15 12.89 19.36 0.77479 8 18.3254 12.96 12.96

Tower 5									
	Wall 1	15	12	1.25	8	8	64.6333	45.7	45.7
	Wall 2	15	12	1.25	8	8	64.6333	45.7	45.7
	Wall 3	15	21.67	0.6922	14.44	8	14.4657	10.23	10.23
	Wall 4	15	21.67	0.6922	14.44	8	14.4657	10.23	10.23
							Ó	604.14	229.77

# Tower 3



Tower 4

Wall 1:	$\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	<mark>Rx = 31.61</mark> Ry = 31.61
Wall 2:	$\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	$\frac{Rx = 47.42}{Ry = 47.42}$
Walls 3, 4, &	5: $\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	Rx = 12.96 Ry = 12.96

Tower 5

Walls 1 & 2:	$\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	$\frac{\mathbf{Rx} = 45.7}{\mathbf{Rx} = 45.7}$
Walls 3 & 4:	$\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	Rx = 10.23 Rx = 10.23







Lobby Floor

					Distano Zero Re	ce from eference		
Element		Proportion	Shear	Base Moment (ft*k)	X (ft)	Y(ft)	Rx	Ry
Tower 3				()				
	Wall 1	0.247873	132.6284	1989.426	195.52	27	149.75	0
	Wall 2	0.3718012	198.9382	2984.073	195.52	7.16	224.62	0
Tower 4								
	Wall 1	0.0523223	27.99589	419.9383	156.57	98.69	31.61	31.61
	Wall 2	0.0784917	41.99826	629.9739	170.85	84.42	47.42	47.42
	Wall 3	0.021452	11.47823	172.1734	159.05	87.02	12.96	12.96
	Wall 4	0.021452	11.47823	172.1734	166.01	93.97	12.96	12.96
	Wall 5	0.021452	11.47823	172.1734	168.24	96.21	12.96	12.96
Tower 5								
	Wall 1	0.0756447	40.47492	607.1238	131.83	120.38	45.7	45.7
	Wall 2	0.0756447	40.47492	607.1238	116.03	104.58	45.7	45.7
	Wall 3	0.0169332	9.060359	135.9054	119.92	116.49	10.23	10.23
	Wall 4	0.0169332	9.060359	135.9054	127.94	108.47	10.23	10.23
						Ó	604.14	229.77

 $e_x = X_{mass} - X_{cr} = 153.43' - 144.96' = 8.47'$ 

 $e_y = Y_{mass} - Y_{cr} = 89.84' - 47.92' = 41.93'$ 

### **Torsional Moment:**

 $M_t = P * e_y = 47.87k * 41.93' = 2007.19'k$ 

Elem	ent	Rx	Ry	X (ft)	Y(ft)	RxX^2	RyY^2	Rx/ÓRxX^2	Ry/ÓRyY^2	Torsional Shear (x)	Torsional Shear (y)
Tower 3											
	Wall 1 Wall	149.75	0	-	20.93	-	0	0.0014007	0	2.811455	0
Tower	2	224.62	0	-	40.76	-	0	0.002101	0	4.217088	0
4	Wall 1 Wall	31.61	31.61	11.61	50.78	4260.778	81509.81	0.0002957	4.552E-05	0.593456	0.339293
	2	47.42	47.42	25.89	36.5	31785.25	63175.3	0.0004435	6.829E-05	0.890278	0.508994
	3	12.96	12.96	14.09	39.1	2572.924	19813.38	0.0001212	1.866E-05	0.243315	0.139109
	4	12.96	12.96	21.05	46.05	5742.608	27483.01	0.0001212	1.866E-05	0.243315	0.139109
Tower	5	12.96	12.96	23.29	48.29	7029.816	30221.74	0.0001212	1.866E-05	0.243315	0.139109
5	Wall 1	45.7	45.7	13.14	72.45	7890.544	239879.4	0.0004275	6.581E-05	0.857987	0.490532
	Wall 2 Wall	45.7	45.7	28.93	56.66	38248.38	146713.3	0.0004275	6.581E-05	0.857987	0.490532
	3 Wall	10.23	10.23	25.04	68.57	6414.226	48099.87	9.569E-05	1.473E-05	0.192061	0.109806
	4	10.23	10.23	17.03	60.55 Ó	2966.914 106911.4	37506.27 694402	9.569E-05	1.473E-05	0.192061	0.109806

The torsional shears are so small, they will be assumed negligible.

Elem	ent	Rx	Ry	Direct Shear (x)	Direct Shear (y)	Area (sf)	Area (sq in)	Shear Stress (psi) (x)	Shear Stress (psi) (y)
Tower 3									
	Wall 1	149.75	0	11.86568	0	6	864	13.733427	0
	Wall 2	224.62	0	17.79813	0	9	1296	13.733121	0
Tower 4									
	Wall 1	31.61	31.61	2.504669	6.585589	9.12	1313.28	1.9071858	5.014611
	Wall 2	47.42	47.42	3.7574	9.879425	13.66	1967.04	1.9101796	5.022483
	Wall 3	12.96	12.96	1.026906	2.700071	12.89	1856.16	0.5532424	1.454654
	Wall 4	12.96	12.96	1.026906	2.700071	12.89	1856.16	0.5532424	1.454654
	Wall 5	12.96	12.96	1.026906	2.700071	12.89	1856.16	0.5532424	1.454654
Tower 5									
	Wall 1	45.7	45.7	3.621113	9.521082	8	1152	3.143327	8.264828
	Wall 2	45.7	45.7	3.621113	9.521082	8	1152	3.143327	8.264828
	Wall 3	10.23	10.23	0.81059	2.131306	14.44	2079.36	0.3898269	1.024982
	Wall 4	10.23	10.23	0.81059	2.131306	14.44	2079.36	0.3898269	1.024982
	Ó	604.14	229.77						

When the shear stress is compared with the allowable shear stress of masonry, all three towers are well below 35 psi.

## First Floor (Rigid Diaphragm)

 $X_{mass} = 221.03'$  $Y_{mass} = 274.98'$ • Center of Mass:

						Distance Refe	from Zero rence		
Eler	nent	Area (sf)	Height (ft)	Unit Weight (k/cf)	Weight (kips)	X (ft)	Y(ft)	Wx (ft*k)	Wy (ft*k)
Tower 1									
	Wall 1	18	15	0.15	40.5	9.91	223.46	401.355	9050.13
	Wall 2	18	15	0.15	40.5	20.78	216.62	841.59	8773.11
	Wall 3	18.64	15	0.15	41.94	2.31	212.95	96.8814	8931.123
	Wall 4	12.45	15	0.15	28.0125	13.35	206.14	373.9669	5774.497
Tower 2									
	Wall 1	8.22	15	0.15	18.495	328.76	27.01	6080.416	499.55
	Wall 2	15.33	15	0.15	34.4925	329.43	18.84	11362.86	649.8387
	Wall 3	20	15	0.15	45	327.09	7.17	14719.05	322.65
Tower 3									
	Wall 1	6	15	0.15	13.5	374.07	327	5049.945	4414.5
	Wall 2	9	15	0.15	20.25	374.07	307.17	7574.918	6220.193
Tower 4									
	Wall 1	9.12	15	0.15	20.52	335.13	398.7	6876.868	8181.324
	Wall 2	13.66	15	0.15	30.735	349.41	384.42	10739.12	11815.15
	Wall 3	12.89	15	0.15	29.0025	337.61	387.02	9791.534	11224.55
	Wall 4	12.89	15	0.15	29.0025	344.57	393.97	9993.391	11426.11
	Wall 5	12.89	15	0.15	29.0025	346.81	396.21	10058.36	11491.08
Tower 5									
	Wall 1	8	15	0.15	18	310.39	420.38	5587.02	7566.84
	Wall 2	8	15	0.15	18	294.59	404.58	5302.62	7282.44
	Wall 3	14.44	15	0.15	32.49	298.48	416.49	9697.615	13531.76
	Wall 4	14.44	15	0.15	32.49	306.49	408.47	9957.86	13271.19
Tower 6									
	Wall 1	13.67	15	0.15	30.7575	146.37	325.3	4501.975	10005.41
	Wall 2	9.11	15	0.15	20.4975	138.67	306.72	2842.388	6286.993
	Wall 3	12.86	15	0.15	28.935	136.48	318.42	3949.049	9213.483
	Wall 4	12.86	15	0.15	28.935	144.33	315.17	4176.189	9119.444
	Wall 5	12.86	15	0.15	28.935	148.49	313.45	4296.558	9069.676
Tower 7									
	Wall 1	6	15	0.15	13.5	268.59	208.37	3625.965	2812.995
	Wall 2	9	15	0.15	20.25	268.59	189.21	5438.948	3831.503
				Ó	693.7425			153336.4	190765.5

Xm = ÓW x/ÓW	Ym = ÓWy/ÓW
221.0279	274.9803
221.0279	274.9803

0.3 < H/L < 3.0 for all tower walls</li>
R/E = t(4(h/L)³ + 3(h/L))⁻¹

consider both flexural & shear

Elem	ent	Height (ft)	Length (ft)	H/L	Area (sf)	t (in)	R/E	Rx	Ry
Tower 1									
	Wall 1	15	18	0.83333	18	12	32.5778	31.98	6.22
	Wall 2	15	18	0.83333	18	12	32.5778	31.98	6.22
	Wall 3	15	18.67	0.80343	18.64	12	29.8719	5.7	29.32
	Wall 4	15	18.67	0.80343	12.45	8	19.9146	3.8	19.55
Tower 2									
	Wall 1	15	12.33	1.21655	8.22	8	59.8069	59.81	0
	Wall 2	15	15.33	0.97847	15.33	12	49.0544	49.05	0
	Wall 3	15	20	0.75	20	12	25.5833	25.58	0
Tower 3									
	Wall 1	15	9	1.66667	6	8	149.748	149.75	0
	Wall 2	15	9	1.66667	9	12	224.622	224.62	0
Tower 4									
	Wall 1	15	13.67	1.09729	9.12	8	44.7086	31.61	31.61
	Wall 2	15	13.67	1.09729	13.66	12	67.0629	47.42	47.42
	Wall 3	15	19.36	0.77479	12.89	8	18.3254	12.96	12.96
	Wall 4	15	19.36	0.77479	12.89	8	18.3254	12.96	12.96
	Wall 5	15	19.36	0.77479	12.89	8	18.3254	12.96	12.96
Tower 5									
	Wall 1	15	12	1.25	8	8	64.6333	45.7	45.7
	Wall 2	15	12	1.25	8	8	64.6333	45.7	45.7
	Wall 3	15	21.67	0.6922	14.44	8	14.4657	10.23	10.23
	Wall 4	15	21.67	0.6922	14.44	8	14.4657	10.23	10.23
Tower 6									
	Wall 1	15	13.67	1.09729	13.67	12	67.0629	62.18	25.12
	Wall 2	15	13.67	1.09729	9.11	8	44.7086	41.45	16.75
	Wall 3	15	19.28	0.77801	12.86	8	18.4972	6.93	17.15
	Wall 4	15	19.28	0.77801	12.86	8	18.4972	6.93	17.15
	Wall 5	15	19.28	0.77801	12.86	8	18.4972	6.93	17.15
Tower 7									
	Wall 1	15	9	1.66667	6	8	149.748	149.74	0
	Wall 2	15	9	1.66667	9	12	224.622	224.62	0
							Ó	1310.82	384.4

For the sum of the rigidities, the angle to the force direction will be used to calculate the components of the chosen wall rigidity.

## Tower 1



Walls 1&2:	$\cos 11^\circ = Rx/R$ $\sin 11^\circ = Ry/R$	Rx = 31.98 Ry = 6.22
Wall 3:	$\cos 79^\circ = Rx/R$ $\sin 79^\circ = Ry/R$	<mark>Rx = 5.7</mark> Ry = 29.32
Wall 4:	$\cos 79^\circ = Rx/R$ $\sin 79^\circ = Ry/R$	<mark>Rx = 3.8</mark> Ry = 19.55









## Tower 4

Wall 1:	$\cos 45^\circ = Rx/R$	Rx = 31.61
	$\sin 45^\circ = Ry/R$	Ky = 31.61
Wall 2:	$\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	Rx = 47.42
	5111 <del>4</del> 5 – Ky/K	xy = +7.42
Walls 3, 4, &	5: $\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	R = 12.96 Rv = 12.96



## Tower 5



55,

Walls 1 & 2:	$\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	$\frac{\mathbf{Rx} = 45.7}{\mathbf{Rx} = 45.7}$
Walls 3 & 4:	$\cos 45^\circ = Rx/R$ $\sin 45^\circ = Ry/R$	<mark>Rx = 10.23</mark> Rx = 10.23

## Tower 6



Wall 2:  $\cos 22^{\circ} = Rx/R$ Rx = 41.45 $\sin 22^{\circ} = Ry/R$ Ry = 16.75

Walls 3, 4, & 5:  $\cos 68^\circ = Rx/R$   $\frac{Rx = 6.93}{sin 68^\circ = Ry/R}$   $\frac{Ry = 17.15}{Ry = 17.15}$ 

Tower 7





First Floor

Distance from Zero Reference

Element		Proportion	Shear	Base Moment (ft*k)	X (ft)	Y(ft)	Rx	Ry
Tower 1								
	Wall 1	0.0243969	13.053974	195.81	9.91	223.46	31.98	6.22
	Wall 2	0.0243969	13.053974	195.81	20.78	216.62	31.98	6.22
	Wall 3	0.0043484	2.3266934	34.9004	2.31	212.95	5.7	29.32
	Wall 4	0.0028989	1.5511289	23.2669	13.35	206.14	3.8	19.55
Tower 2								
	Wall 1	0.0456279	24.413953	366.209	328.76	27.01	59.81	0
	Wall 2	0.0374193	20.021809	300.327	329.43	18.84	49.05	0
	Wall 3	0.0195145	10.441547	156.623	327.09	7.17	25.58	0
Tower 3								
	Wall 1	0.1142415	61.126725	916.901	374.07	327	149.75	0
	Wall 2	0.1713584	91.688046	1375.32	374.07	307.17	224.62	0
Tower 4								
	Wall 1	0.0241147	12.902943	193.544	335.13	398.7	31.61	31.61
	Wall 2	0.0361758	19.356456	290.347	349.41	384.42	47.42	47.42
	Wall 3	0.0098869	5.290166	79.3525	337.61	387.02	12.96	12.96
	Wall 4	0.0098869	5.290166	79.3525	344.57	393.97	12.96	12.96
	Wall 5	0.0098869	5.290166	79.3525	346.81	396.21	12.96	12.96
Tower 5								
	Wall 1	0.0348637	18.654366	279.815	310.39	420.38	45.7	45.7
	Wall 2	0.0348637	18.654366	279.815	294.59	404.58	45.7	45.7
	Wall 3	0.0078043	4.1758023	62.637	298.48	416.49	10.23	10.23
	Wall 4	0.0078043	4.1758023	62.637	306.49	408.47	10.23	10.23
Tower 6								
	Wall 1	0.047436	25.381367	380.721	146.37	325.3	62.18	25.12

						Ó	1310.82	384.4
	Wall 2	0.1713584	91.688046	1375.32	268.59	189.21	224.62	0
	Wall 1	0.1142338	61.122643	916.84	268.59	208.37	149.74	0
Tower 7	wall 5	0.0052868	2.8287693	42.4315	148.49	313.45	6.93	17.15
					1 4 0 4 0	242.45	C 02	17 15
	Wall 4	0.0052868	2.8287693	42.4315	144.33	315.17	6.93	17.15
	Wall 3	0.0052868	2.8287693	42.4315	136.48	318.42	6.93	17.15
	Wall 2	0.0316214	16.919551	253.793	138.67	306.72	41.45	16.75

 $e_x = X_{mass} - X_{cr} = 221.03' - 229.4908' = -8.46'$ 

 $e_y = Y_{mass} - Y_{cr} = 274.98' - 261.05' = 13.93'$ 

### **Torsional Moment:**

 $M_t = P * e_y = 535.07k * 13.93' = 7453.53'k$ 

Eleme	nt	Rx	Ry	X (ft)	Y(ft)	RxX^2	RyY^2	Rx/ÓRxX^2	Ry/ÓRyY^2	Torsional Shear (x)	Torsional Shear (y)
Tower 1											
	Wall 1 Wall	31.98	6.22	219.59	37.59	1542068	8788.91	5.107E-06	1.624E-06	0.038064	0.012106
	2 Wall	31.98	6.22	216.15	54.91	1494132	18753.97	5.107E-06	1.624E-06	0.038064	0.012106
	3 Woll	5.7	29.32	227.19	48.1	294207	67835.05	9.102E-07	7.656E-06	0.006784	0.057067
Tower 2	4 4	3.8	19.55	208.72	44.43	165543	38592.19	6.068E-07	5.105E-06	0.004523	0.038051
	Wall										
	1 Wall	59.81	0	-	234.05	-	0	9.551E-06	0	0.071188	0
	2 Wall	49.05	0	-	242.21	-	0	7.833E-06	0	0.058381	0
Tower ?	3	25.58	0	-	253.88	-	0	4.085E-06	0	0.030446	0
Tower 5	Wall										0
	1 Wall	149.75	0	-	65.94	-	0	2.391E-05	0	0.178238	0
	2	224.62	0	-	44.29	-	0	3.587E-05	0	0.267352	0
Tower 4	Wall										
	1 Wall	31.61	31.61	105.63	137.65	352695	598931.2	5.048E-06	8.254E-06	0.037623	0.061524
	2 Woll	47.42	47.42	119.91	123.37	681824	721739.8	7.572E-06	1.238E-05	0.056441	0.092295
	3 Woll	12.96	12.96	108.11	125.97	151474	205655	2.07E-06	3.384E-06	0.015426	0.025225
	4 Woll	12.96	12.96	115.07	132.92	171605	228973.7	2.07E-06	3.384E-06	0.015426	0.025225
	5	12.96	12.96	117.31	135.16	178351	236756.2	2.07E-06	3.384E-06	0.015426	0.025225
Tower 5	Wall										
	1 Wall	45.7	45.7	80.89	159.33	299024	1160142	7.298E-06	1.193E-05	0.054394	0.088948
	2	45.7	45.7	65.09	143.54	193618	941590.5	7.298E-06	1.193E-05	0.054394	0.088948

					Ó	6262210	3829516				
	2	224.62	0	-	71.84	-	0	3.587E-05	0	0.267352	0
	Wall										
	1	149.74	0	-	52.68	-	0	2.391E-05	0	0.178226	0
1000017	Wall										
Tower 7	5	0.75	17.15	01.01	02.4	10 11 0				0.000240	0.00000
	vvali 5	6.93	17 15	81 01	52.4	45479	47089 78	1 107E-06	4 478E-06	0 008248	0.03338
	4	6.93	17.15	85.17	54.12	50269.7	50231.91	1.107E-06	4.478E-06	0.008248	0.03338
	Wall										
	3	6.93	17.15	93.02	57.37	59963.4	56446.08	1.107E-06	4.478E-06	0.008248	0.03338
	2 Wall	41.45	16.75	90.83	45.67	341966	34936.29	6.619E-06	4.374E-06	0.049335	0.032601
	Wall										
	1	62.18	25.12	83.13	64.25	429701	103696.9	9.929E-06	6.56E-06	0.074009	0.048892
Tower	Wall										
Tower 6	4	10.23	10.23	76.99	147.42	60637.9	222325.1	1.634E-06	2.671E-06	0.012176	0.019911
	Wall										
	3	10.23	10.23	68.98	155.44	48676.8	247173.1	1.634E-06	2.671E-06	0.012176	0.019911
	Wall										

The first floor torsional shears, like the lobby, are very small and will be considered negligible.

Element		Rx	Ry	Direct Shear (x)	Direct Shear (y)	Area (sf)	Area (sq in)	Shear Stress (psi) (x)	Shear Stress (psi) (y)
Tower 1									
	Wall 1	31.98	6.22	13.0541	8.658	18	2592	5.0362932	3.340278
	Wall 2	31.98	6.22	13.0541	8.658	18	2592	5.0362932	3.340278
	Wall 3	5.7	29.32	2.32671	40.8123	18.64	2684.16	0.8668301	15.204873
	Wall 4	3.8	19.55	1.55114	27.2128	12.45	1792.8	0.8652055	15.178964
Tower 2									
	Wall 1	59.81	0	24.4141	0	8.22	1183.68	20.625621	0
	Wall 2	49.05	0	20.022	0	15.33	2207.52	9.0698877	0
	Wall 3	25.58	0	10.4416	0	20	2880	3.6255642	0
Tower 3									
	Wall 1	149.75	0	61.1272	0	6	864	70.749053	0
	Wall 2	224.62	0	91.6887	0	9	1296	70.747478	0
Tower 4									
	Wall 1	31.61	31.61	12.903	43.9999	9.12	1313.28	9.8250486	33.503825
	Wall 2	47.42	47.42	19.3566	66.0068	13.66	1967.04	9.8404713	33.556417
	Wall 3	12.96	12.96	5.29021	18.0398	12.89	1856.16	2.8500806	9.7188933
	Wall 4	12.96	12.96	5.29021	18.0398	12.89	1856.16	2.8500806	9.7188933
	Wall 5	12.96	12.96	5.29021	18.0398	12.89	1856.16	2.8500806	9.7188933
Tower 5									
	Wall 1	45.7	45.7	18.6545	63.6126	8	1152	16.193147	55.219306
	Wall 2	45.7	45.7	18.6545	63.6126	8	1152	16.193147	55.219306
	Wall 3	10.23	10.23	4.17583	14.2398	14.44	2079.36	2.0082302	6.8481485
	Wall 4	10.23	10.23	4.17583	14.2398	14.44	2079.36	2.0082302	6.8481485
Tower 6									
	Wall 1	62.18	25.12	25.3816	34.9661	13.67	1968.48	12.893988	17.762981
	Wall 2	41.45	16.75	16.9197	23.3154	9.11	1311.84	12.897668	17.773017

	Ó	1310.82	384.4						
	Wall 2	224.62	0	91.6887	0	9	1296	70.747478	0
	Wall 1	149.74	0	61.1231	0	6	864	70.744329	0
Tower 7									
	Wall 5	6.93	17.15	2.82879	23.8721	12.86	1851.84	1.5275566	12.891038
	Wall 4	6.93	17.15	2.82879	23.8721	12.86	1851.84	1.5275566	12.891038
	Wall 3	6.93	17.15	2.82879	23.8721	12.86	1851.84	1.5275566	12.891038

When the shear stress is compared with the allowable shear stress of masonry, towers 3 and 7 both have shear stresses that surpass 35 psi. This can be due to a miscalculation or wrong assumption.

## Second and Third Floors (Flexible Diaphragm)

Load Direction:	S-N
Seismic Load:	$2^{nd}$ Floor = 202.57k
	$3^{rd}$ Floor = 257.74k
Design Basis:	Capacity
Elements:	Masonry Towers
Height:	10 ft



Elem	ent	Area (sf)	Height (ft)	Length (ft)	Trib Width (ft)	Trib Area (sf)	Fraction of Trib Area	Shear Wall Load (2nd Fl)	Shear Wall Load (3rd Fl)	Area (sq in)	Shear Stress (psi) (2nd Fl)	Shear Stress (psi) (3rd Fl)
Tower 1												
	Wall 1	18	10	18	29.31	293.1	0.034287	6.9454196	8.8370067	2592	2.67956	3.409339
	2 Wall	18	10	18	29.31	293.1	0.034287	6.9454196	8.8370067	2592	2.67956	3.409339
	3 Wall	18.64	10	18.67	29.31	293.1	0.034287	6.9454196	8.8370067	2684.16	2.587558	3.29228
Tower 2	4 4	12.45	10	18.67	29.31	293.1	0.034287	6.9454196	8.8370067	1792.8	3.874063	4.929165
	Wall 1	8.22	10	12.33	87.85	878.5	0.102766	20.817302	26.4869	1183.68	17.58693	22.37674
	Wall 2	15.33	10	15.33	10	100	0.011698	2.3696416	3.0150142	2207.52	1.073441	1.365792
<b>T</b>	Wall 3	20	10	20	6.33	63.3	0.007405	1.4999832	1.908504	2880	0.520827	0.662675
3	M/-11											
	1	6	10	9	51.63	516.3	0.060396	12.23446	15.566519	864	14.16025	18.0168
Tower	2	9	10	9	51.63	516.3	0.060396	12.23446	15.566519	1296	9.44017	12.0112
4	Wall	9.12	10	10.07	47 74	477 4	0.055040	11 010000	44 000070	40.40.00	0.044057	10.0001
	1 Wall	13.66	10	13.67	47.74	477.4	0.055846	11.312669	14.393678	1313.28	8.614057	10.9601
	2 Wall	12.89	10	13.67	47.74	477.4	0.055846	11.312669	14.393678	1967.04	5.751113	7.31743
	3 Wall	12.89	10	19.36	47.74	477.4	0.055846	11.312669	14.393678	1856.16	6.094663	7.754546
	4 Wall	12.89	10	19.36	47.74	477.4	0.055846	11.312669	14.393678	1856.16	6.094663	7.754546
Tower 5	5	. 2.00		19.36	47.74	477.4	0.055846	11.312669	14.393678	1856.16	6.094663	7.754546
	Wall 1	8	10	12	16.62	166.2	0.019442	3.9383444	5.0109537	1152	3.418702	4.349786
	Wall 2	8	10	12	16.62	166.2	0.019442	3.9383444	5.0109537	1152	3.418702	4.349786
	Wall 3	14.44	10	21.67	16.62	166.2	0.019442	3.9383444	5.0109537	2079.36	1.894018	2.409854
Tower	Wall 4	14.44	10	21.67	16.62	166.2	0.019442	3.9383444	5.0109537	2079.36	1.894018	2.409854
6	Wall 1	13.67	10	13.67	25.82	258.2	0.030204	6.1184147	7.7847668	1968.48	3.108192	3.95471
	Wall 2	9.11	10	13.67	25.82	258.2	0.030204	6.1184147	7.7847668	1311.84	4.663995	5.934235
	Wall 3	12.86	10	19.28	25.82	258.2	0.030204	6.1184147	7.7847668	1851.84	3.303965	4.203801
	Wall 4	12.86	10	19.28	25.82	258.2	0.030204	6.1184147	7.7847668	1851.84	3.303965	4.203801
Tower	Wall 5	12.86	10	19.28	25.82	258.2	0.030204	6.1184147	7.7847668	1851.84	3.303965	4.203801
7	Wall 1	6	10	9	8.045	80.45	0.009411	1.9063767	2.425579	864	2.206455	2.807383
	Wall 2	9	10	9	87.85 Ó	878.5 8548.55	0.102766	20.817302	26.4869	1296	16.06273	20.43742

## **APPENDIX 5: MEMBER SPOT CHECKS**

**First Floor Steel** 





	STEEL EBALLING - SDOT chacks
	loist bist spacing = hearspaces
	50131 = 41-55/16" = 4.44'
	1 4psf(4,44') = 500.10plf
	A $Hopsf(4,44') = 177.6 plf$
	From joist table (NC) catalogue)
<u>.</u>	TT = 550  plf > 576  lbplf
	LL = 377DF 7 177.6 DF
	: Use 18k9
	Order 1.2D+1.6L=152.8pst
	Assumption. Theat mastan support as primed contection
	17.2 17.2 17.2 17.2 17.2 14.8 13.3 13.3 14.1 16.4 32-3/4"
	55% 74 1 1 1 1 1 1 1 1
	A 4 14'-55/16" B 4 3'-109/16" 4C
	22'-8" 10.2 22'-8"
	45'-4"
	Joist wts + factored loads 18k9 = 10.2plf
	10.2  plf(25') + 152.8  psf(4.44')(25') = 17.2  k
	10.2plf(22) + 152.8psf(3.8)(22) = 13.3.k
	10.2  pH(23.35) + 152.8  psf(3.88)(23.35) = 14.1  k
	10.2017 (21.25) + 152.8 p+ (3.86) (21.25) = 10.1k
	Beam wit + factored loads W18x35=35 plf
	35p1f(221) + 152.8 pof(4.16)(221) = 14.8k
	Name District time El- conclust
	MUMERT DISTRIDUCTION ET-CONSTANT $k_{AB} = k_{Da} = EI - L$ $k_{D}^{M} = 3/4V = 0.75V = k_{B}^{M}$
	22.61 BEC- 17 U. DA DA
	$FEM_{AB} = -\frac{Pab^{2}}{1^{2}} = -162.98' k FEM_{BA} = \frac{Pa^{c}D}{1^{2}} = 159.1' k$
	$FEM_{BC} = -150.89'k$ $FEM_{CB} = 165.79'k$ (see table for calcs)

$\bigcirc$					
loints	A		В	С	
Members	AB	BA	BC	CB	6
k	K	k	k	k	
KM		0.75k	0.75k		
DF	1.0	0,5	0.5	1.0	
FEMS	-162.98	159.1	-150.89	165.79	
	+162.98 -	+81.49	- 82.9		
		+3.4	+3.4		
	0	+243.99	-230.39	0	
	17	1.2k	16	4	
		243.99	230.39 13.3 14.1		
(	V V V		13.3 4 4 4	1)0	SBR
		AL AL	134.24	AL	
	0.6K	35.44	JUCK	39.3k	
				0 - 0 -	
	2MB=0: 1	147.12 k - RA(22	-67)=0 00	RA= 50.6k	See table
<u>.</u>		THE ONLY D	02.70-0 8	P = 211 (2)	formers
	ZMC=0:	114.621 K - MB(	22.61)=0 00	NB= 34. LK	ior and.
				<u></u>	
		243.99	230.39		
	P ( A	<u> </u>	Δ	<u> </u>	
	10.8	108	110.2	1102	
	V	10.0	V.	1 10.0	
	24399 10-	217=1091	220 29/22	17=102	
	243.11/20	2.61 - 10.8K	250.51/22	.61 - 10.2	
				· · · ·	
				1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
	1299	111 2 1	Agu	1 110 E	
	51.0	46.2	129	44.5	7
				4 - 15	
	12.1				

	P (kips)	a (ft)	b (ft)	L (ft)	FEM (ft*k)
AB	17.2	0.433	22.227	22.67	-7.15937321
	17.2	4.886	17.784	22.67	-51.7175292
	17.2	9.329	13.341	22.67	-55.5695997
	17.2	13.772	8.898	22.67	-36.4928031
	17.2	18.227	4.443	22.67	-12.0418504
				FEM	
				AB	-162.981156
BA	17.2	0.433	22.227	22.67	0.139470401
	17.2	4.886	17.784	22.67	14.20894331
	17.2	9.329	13.341	22.67	38.85831612
	17.2	13.772	8.898	22.67	56.48223015
	17.2	18.227	4.443	22.67	49.40058673
				FEM	
				BA	159.0895467
	40.0		10 70		05 454 405
BC	13.3	3.88	18.79	22.67	-35.4514405
	13.3	1.76	14.91	22.67	-44.644258
	14.1	11.64	11.03	22.67	-38.8525992
	16.4	15.52	7.15	22.67	-25.3188869
	16.4	19.4	3.27	22.67	-6.61969596
				FEM	150 00000
				BC	-150.00000
СВ	13.3	3.88	18.79	22.67	7.320467755
	13.3	7.76	14.91	22.67	23.23537503
	14.1	11.64	11.03	22.67	41.00129232
	16.4	15.52	7.15	22.67	54.95791948
	16.4	19.4	3.27	22.67	39.27281396
	·			FEM	
				СВ	165.7878686

	P (kips)	Moment Arm (ft)	Moment (ft*k)
ÓM @ B	17.2	22.227	382.3044
	17.2	17.784	305.8848
	17.2	13.341	229.4652
	17.2	8.898	153.0456
	17.2	4.443	76.4196
		Ó	1147.12
ÓM @ C	13.3	18.79	249.907
	13.3	14.91	198.303
	14.1	11.03	155.523
	16.4	7.15	117.26
	16.4	3.27	53.628
		Ó	774.621



	Column # floors above 1st floor = 2
	1-74m2
	U = 400sf
	Girder wt = 40 plf · 45'-4"= 1.8K
	$Beam wt = 35plf \cdot 22' = 0.8k$
	Trib area = $H_{123}$ 2ft ² (from CAD dup)
	$A_T = 2(463.2) = 926.4ft^2$
	$A_{I} = H(926.4) = 3705.6ft^{2}$
	15
	$L = L_0(0.25 +$
	Use $L = 0.496L_0 = 19.840sf \cdot (926.4ft^2)/1000 = 18.4k$
	$Roof LL = 20psf(926.4ft^2)/1000 = 18.5k$
	$DL = 74 \text{ psf} (926.4 \text{ H}^2) / 1000 = 68.6 \text{ k}$
3	$P_{4}=1.2D+1.6L+0.5L_{R}=121k$
	121k Nomentfrom aicder = 13 la'k
	$X = \frac{24}{d} = \frac{24}{15} = 1.66$
<u></u>	-1211 + 16(12.614)
	= 142.8 k
<u></u>	K=1.0 for both X-X ? Y-Y axis
* <u>.</u>	$V_{1} = V_{1} = 15^{1}$
	NIX - NIY - 13
	Table 4-2 (LRFD) Try W 10x33
-	
	PPD = 220k > 142.8k OK
	ILSE WIDX33
all a star	

Depth (In.)	18K3	18K4	18K5	18K6	18K7	18K9	18K10	20K3	20K4	20K5	20K6	20K7	20K9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K
	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt.	6.6	72	77	85	a	10.2	117	67	76	82	80	03	10.8	12.2	0	0.0	0.2	0.7	11.2	12.6	12
(lbs./ft.)	0.0	1.2	1.1	0.0	9	10.2	11.7	0.7	1.0	0.2	0.9	5.5	10.0	12.2	0	0.0	5.2	5.1	11.3	12.0	13.
Span (ft.)				_					1												
<b>♥</b> 18	550	550	550	550	550	550	550														
10	550	550	550	550	550	550	550														
19	514	550	550	550	550	550	550							-							
	494	523	523	523	523	523	523							1							
20	463	550	550	550	550	550	550	517	550	550	550	550	550	550							
21	423	490	490	490	490	490	490	468	550	550	550	550	550	550							
-	364	426	460	460	460	460	460	453	520	520	520	520	520	520	_		018			-	
22	382	460	518	550	550	550	550	426	514	550	550	550	550	550	550	550	550	550	550	550	550
1.00	316	370	414	438	438	438	438	393	461	490	490	490	490	490	548	548	548	548	548	548	548
23	349	420	473	516	550	550	550	389	469	529	550	550	550	550	518	550	550	550	550	550	550
24	276	323	362	393	418	418	418	344	402	451	468	468	468	468	491	518	518	518	518	518	518
24	242	284	318	345	382	396	306	302	353	306	520 430	148	000	220	4/5	192	200	200	200	200	106
25	294	355	400	435	485	550	550	329	396	446	486	541	550	550	438	493	537	550	550	550	550
	214	250	281	305	337	377	377	266	312	350	380	421	426	426	381-	427	464	474	474	474	474
26	272	328	369	402	448	538	550	304	366	412	449	500	550	550	404	455	496	550	550	550	550
	190	222	249	271	299	354	361	236	277	310	337	373	405	405	338	379	411	454	454	454	454
27	252	303	342	3/2	415	498	550	281	339	382	416	463	550	550	374	422	459	512	550	550	. 550
28	234	282	318	346	385	463	548	261	315	355	386	430	517	550	301	337	427	406	432	432	432
20	151	177	199	216	239	282	331	189	221	248	269	298	353	375	270	302	328	364	413	413	413
29	218	263	296	322	359	431	511	243	293	330	360	401	482	550	324	365	398	443	532	550	550
	136	159	179	194	215	254	298	170	199	223	242	268	317	359	242	272	295	327	387	399	399
30	203	245	276	301	335	402	477	227	274	308	336	374	450	533	302	341	371	413	497	550	550
21	123	220	161	175	194	229	269	153	179	201	218	242	286	336	219	245	266	295	349	385	385
31	111	130	146	158	175	207	2/3	138	162	182	108	210	250	304	108	319	347	387	400	260	200
32	178	215	242	264	294	353	418	199	240	271	295	328	395	468	265	299	326	363	436	517	549
-	101	118	132	144	159	188	221	126	147	165	179	199	235	276	180	201	219	242	287	337	355
33	168	202	228	248	276	332	393	187	226	254	277	309	371	440	249	281	306	341	410	486	532
24	92	108	121	131	145	171	201	114	134	150	163	181	214	251	164	183	199	221	261	307	334
34	84	98	110	120	132	156	184	105	122	137	1/0	165	105	220	235	200	182	321	380	458	31/
35	149	179	202	220	245	294	349	166	200	226	246	274	329	390	221	249	272	303	364	432	494
	77	90	101	110	121	143	168	96	112	126	137	151	179	210	137	153	167	185	219	257	292
36	141	169	191	208	232	278	330	157	189	213	232	259	311	369	209	236	257	286	344	408	467
	70	82	92	101	111	132	154	88	103	115	125	139	164	193	126	141	153	169	201	236	269
37								148	179	202	220	245	294	349	198	223	243	271	325	386	442
38								141	170	191	208	232	279	331	187	211	230	256	308	366	410
								74	87	98	106	118	139	164	107	119	130	144	170	200	228
39								133	161	181	198	220	265	314	178	200	218	243	292	347	397
			1					69	81	90`	98	109	129	151	98	110	120	133	157	185	21
40								127	153	172	188	209	251	298	169	190	207	231	278	330	377
41								64	75	84	91	101	119	140	91	102	111	123	146	171	195
													Tist		85	95	103	114	135	159	18
42															153	173	188	209	252	299	342
												218			79	88	96	106	126	148	168
43									-						146	165	179	200	240	285	326
					-				2						130	82	89	99	117	138	157
44						1							1		68	76	83	02	100	120	1/4

#### STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

. Ē Ĩ Ē . į. ę 1 1 1 

## **Third Floor Wood**





Section of Wood Framing



Wood Stud Bearing Wall

0	WOOD FRAMING - spot checks
	Joist       Joist spacing = 16" = 1.33'         LL+DL = 40 psf + 20 psf       Span in table = $30' - 7\%6" + 3"$ Image: Span in table = $30' - 7\%6" + 3"$ = $30' - 10\%6"$ Image: Span in table = $30' - 7\%6" + 3"$ = $30' - 10\%6"$ Image: Span in table = $30' - 7\%6" + 3"$ = $30' - 10\%6"$ Image: Span in table = $30' - 7\%6" + 3"$ = $30' - 10\%6"$ Image: Span in table = $30' - 7\%6" + 3"$ = $30' - 10\%6"$ Image: Span in table = $30' - 7\%6" + 3$ = $30' - 10\%6"$ Image: Span in table = $30' - 10\%6"$ = $30' - 10\%6"$ Image: Span in table = $30' - 10\%6"$ = $30' - 10\%600$ Image: Span in table = $30' - 10\%600$ = $30' - 10\%600$ Image: Span in table = $30' - 10\%600$ = $30' - 10\%600$ Image: Span in table = $30' - 10\%600$ = $30' - 10\%6000$ Image: Span in table = $30' - 10\%60000$ = $30' - 10\%600000000000000000000000000000000000$
	TL = 60psf(1.33') = 80plf LL = 20psf(1.33') = 26.6plf
	1157.TL = 92plf 1257.TL = 100plf
<u> </u>	From TJL allowable PLF table try 18"TJL 1159.TL = 95plf > 92plf 1259.TL = 103plf > 100plf OK
	Use 18" TJL truss
	Bearing stud wall Assumption: stud spacing @ 16" o.c. and joists lined up w/studs IP Southern Pine No. I non-dense (given in dwgs.)
10'	Joist weight + loading 4.25  lbs/Ft + 80  plf = 84.25  plf P = 84.25  plf(30' - 77/16'') = 2579.72  lbs = 2.6  k
	$Try 2x4 SP A = 5.25in^2$
0	$OII.P = F'_{c}A \implies F'_{c} = \frac{2579.721bs}{5.25in^2} = 491.4psi$
	From NDS Table 4B: CF included intable values for SP.
	Fc = 1700 psi

0	Column Capacity of 2x4 stud
	$\left(\frac{l_{x}}{d}\right)_{x} = \frac{10!(12in/ff)}{3.5"} = 34.3$
	$C_{M}=0.9$ $C_{t}=1.0$ $C_{T}=1.0$ $C_{t}=1.0$ $C_{D}=1.0$
	E = 1.666psi
	E' = 1.6Ebpsi(0.9)(1.0)(1.0)(1.0) = 1.44Ebpsi
	KCE=0.3 C=0.8 For visually graded sawn lumber.
	$F_{CE} = \frac{K_{CE}(E)}{(2^{9}/d)_{x}^{2}} = \frac{0.30.44E0PS0}{34.3^{2}} = 367.2 psi$
	$F_c^* = F_c C_b C_H C_L C_L = 1700 psi(1.0)(0.8)(1.0)(1.0)$
	= $1360psi$ FcE/F * = $367.2psi/1360psi$ = 0.27
	$[1 + F_{cE}/F_{c}^{*}]/2c = [1 + 0.27]/2(0.8) = 0.794$
	$C_{p} = \frac{1 + F_{cE}/F_{c}^{*}}{2c} - \sqrt{\frac{(1 + F_{cE}/F_{c}^{*})^{2} - F_{cE}/F_{c}^{*}}{2c}}$
	$= 0.794 - \sqrt{(0.794)^2 - 0.27/0.8^2} = 0.253$
	$F'_{c} = F_{c} C_{D} C_{H} C_{t} C_{P} C_{1} = 1700 psi(1.0)(0.8)(1.0)(0.253)(1.0)$ = 344.08 psi < 491.4 psi :: NG
	$T_{ry} 2x6 SP A = 8.25 in^2$
	$all.P = F'cA \implies F'c = \frac{2519.12105}{8.25in^2} = 312.7 psi$
	From NDS Table 4B:
	Fc=1600psi

	$\frac{\text{Column Capacity of 2xb Stud}}{\left(\frac{l_{x}}{d}\right)_{x}} = \frac{10'(12in/Ft)}{5.5''} = 21.8$	
	$E'=1.44 E Opsi  (same as 2x4 calculation)$ $K_{CE}=0.3 \qquad C=0.8$ $F_{CE}=\frac{K_{CE}(E')}{(1.44)}=0.3(1.44 E Opsi)=9.09 psi$	
/`	$F_{c}^{*} = 1600psi(1.0)(0.8)(1.0)(1.0) = 1280psi$ $F_{c}^{*} = 0.71$	
	$\begin{bmatrix} 1 + F_{ce}/F_{c}^{*} \end{bmatrix} / 2c = \begin{bmatrix} 1 + 0.71 \end{bmatrix} / 2(0.8) = 1.07$ $C_{p} = 1.07 - \sqrt{(1.07)^{2} - (0.71/0.8)} = 0.563$	
	$F'_{c} = 1600 p_{61}(1.0)(0.8)(1.0)(0.563)(1.0)$ $= 720.64 p_{61} > 312.7 p_{51} OK$	
	Use 2x6 SP studs @ 16"O.C.	

#### 6 Trus Joist III Open-Web Truss Commercial Design Guide 1043 III May 2005

### TJL[™] Allowable Uniform Load Table (PLF) = Parallel Chord

For economical truss design, see page 5.

		Depth																										
	14	14" 16"		6"	18"		20"		22"		24"		26"		2	8"	3(	0"	3	2"	3	4"	3	6"	31	8"	41	0"
Coop	100% TL	115% TL	100% TL	115% TL	100% TL	115% π.	100% TL	115% TL	100% TL	115% TL	100% TL	115% TL	100% TL	115% TL	100% TL	115% TL	100% TL	115% TL	100% TL	115% TL	100% TL	115% R						
Span	100% LL	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	125% N	100% LL	125% L	100% LL	125% L	100% LL	125% R	100% LL	125% R	100% LL	125% N	100% LL	125% N
14'	288	330	322	370	332	382	334	393	347	377	313	360	308	354	314	357	301	327	289	325	279	321	264	306	262	302	230	283
1000	261	359		402		416		426		410	-	391		385		394		376		361		341		309		328	3	308
16'	224	259	254	297	281	340	299	355	315	365	307	362	307	361	296	340	291	342	280	325	270	291	261	283	257	296	244	273
1926	1/4	281	230	323	210	355	070	385	200	397	005	387	200	384	000	370	200	363	070	353	05.6	337	050	305	0.15	305	224	2/6
18'	188	218	164	253	249	280	2/8	313	296	333	295	339	309	338	283	325	282	354	212	313	250	300	250	294	245	282	234	203
	124	182	182	208	206	232	226	261	246	281	268	307	28/	317	27/	307	273	314	260	307	2/8	280	235	280	220	262	233	261
20'	90	198	122	227	154	256	190	281	227	306	200	324	204	330	214	325	215	316	200	305	240	314	235	305		285	200	283
0.01	70	155	142	177	173	199	192	220	210	240	228	251	235	269	251	292	266	290	258	289	245	278	246	278	203	264	209	259
22	66	168	90	192	117	216	144	240	174	263	205	273		299	NAME OF TAXABLE	295		299		301	1	276	- 13	280		282		282
241		127	90	148	145	169	161	184	180	206	195	218	210	238	224	255	233	267	236	270	241	260	240	263	227	258	183	242
24		138	69	162	90	181	112	203	136	220	159	237	186	259	214	273		274		277		269		267	omaterie	270		252
26'		107		123	104	143	138	160	153	175	163	186	175	207	187	223	205	232	210	244	207	237	225	231	207	240	171	235
		118		137	70	156	88	175	108	193	128	210	150	225	172	240	194	254		254		241		247		249		247
28'		93		109	68	124	112	138	132	151	144	164	155	181	170	191	177	205	186	214	190	221	200	219	188	222	200	214
		101		119	55	136	70	152	86	165	103	181	120	195	139	212	158	220	179	227	417	240	471	235	473	230	171	227
30'		82	<u>.</u>	96		108	/8	120	115	132	12/	145	137	158	147	100	158	179	163	189	167	195	1/6	199	1/3	199	1/1	201
Terrar and	-	70		105		05	57	105	84	145	111	126	121	1/0	114	165	129	190	14/	167	100	176	161	190	162	192	150	196
32'		70		88		103		115	57	127	60	130	81	151	04	158	107	170	121	183	137	101	151	100	102	100	150	108
	1	58		72		83		93	62	103	90	112	106	123	116	133	124	143	130	149	135	156	141	164	148	169	141	173
34'		58		78		91		101	47	112	57	123	68	135	79	146	90	153	102	163	115	170	128	178	141	183		187
201		49		65		73		83		92		100	86	109	102	118	110	127	116	135	123	142	126	148	132	151	136	160
30		49		66		80	Ť	91		100		110	57	119	66	129	76	139	87	148	97	154	109	160	120	167	132	171
38'		42		56		66		74		82		90	65	98	86	105	98	112	105	120	111	127	115	135	112	138	115	142
		42		56		72		81		89	1	98	48	106	56	115	65	124	74	133	83	140	93	147	102	150	113	154
40'				48		59		68		75		82		89	69	96	88	103	95	110	99	117	101	121	101	127	100	131
			ł.	48		62		14		81	3	89		9/	48	105	56	113	63	120	/1	12/	80	133	88	139	9/	144
42'				42		54	1	67		08	5 1 3	/5	2	81		88	02	93	55	100	62	106	60	112	76	110	82	121
NING	4			42		47		56		62	-	68		73		80	40	86	60	00	66	06	69	102	69	107	63	111
44'						47	i i	59		67		74		80		87		92	48	98	54	105	60	111	67	117		121
10						41		51		56		62		67		72		78	-10	83		88	00	93		97		100
40					1	41		51		61		67		73	1	79		85		90		95		101		107		112
4.8'								45		52		57		61		66		71		76		81		86		90		94
40								45		55		61		72		72		77		83		88		93		99		102
50'								40		48	Q	52		57		61		66		70		75	1	79		84		88
								40		49		57		61		72		72		76		81		86		91		94
52'										44	8	48		52		57		61		65		69		73		77		81
		_		-				_		44		53		5/		61		00		/1		15	-	79		84		88
54'							1			30	2	40		49		57		5/		66		70	2	7/		72		/0
Section 2				-						23		47		45		40		52		56		60		62		67	-	70
56'												42		49		53		57		61		65	ð 1	69		73		76
- 01	-			-			-	-			1			42		46		49		52		56	1	59	-	62		66
58					1		1					38		45		50	1	53		57		61	1	64		68		71
60'				1				Î			Č.			40		43		46		49		52		55		58		62
00											2			40		47		49	-	53		61		60		63	1	67

See page 4 for available depths and profiles. For depths and profiles not shown, use TJ-Beam® software or contact your Trus Joist representative for assistance.

#### General Notes

- Open-web trusses will be custom designed to the specified loads.
   Values shown are maximum allowable load capacities based on the following assumptions:

  - Simple span, uniformly loaded conditions, with provisions for positive drainage (¹/₄" per foot slope minimum) in roof applications.
    "Span" indicates distance from inside face to inside face of bearing plus 3".
    Top chord no-notch bearing clips with 1²/₄" bearing. Higher values may be possible with other types of bearing clips.
- Straight line interpolations may be made between depths and spans.
- · These tables may also be used for bottom chord bearing trusses with or without cantilevers — at one or both ends. Cantilevers are limited to 1/3 of the main span provided that the inboard shear for cantilevered conditions is limited to 2,500 lbs for the  $\mathsf{TJL}^{\mathsf{re}}$  and  $\mathsf{TJLX}^{\mathsf{re}}$  series.
- Values in shaded areas may be increased 7% for repetitive-member use.

General Notes continued on page 7

### **APPENDIX 6: ELEVATION PLAN**



### **APPENDIX 7: GENERAL BUILDING SECTION**

