Nick Szakelyhidi Structural MK Parfitt Office Building, Washington, DC* Technical Assignment 2 10/31/05

*Building specifics omitted at owners request

Executive Summary

The purpose of this technical assignment is to compare alternate floor systems to the originally designed floor system. The first part is a review of the existing floor system as was investigated in detail for technical assignment 1. A reasonable loading is determined using IBC 2003 live loads, and ACI dead load guidelines. This loading was used to later in the report for design of the alternate floor systems.

Four alternate floor systems were considered. The original design was also considered without the effects of post-tensioning. The other systems were a one-way skip-joist, precast double tees, two-way waffle slab construction, and a non-composite metal deck system. Each system was roughly sized using a representative bay. Critical features of each system were checked and compared to other systems and the original to determine the feasibility of each alternative.

The factors used to check the framing systems were overall structure depth, effect to lateral system, strength, architectural impact, fire-rating, cost, material usage, LEED design, and constructability. Overall it appeared that the modified two-way slab with drop panels was the best choice, because the post-tensioning was not necessary in ultimate strength checks. The waffle slab was another good choice, as was the precast tees except for their excessive depth.

Introduction

The designed structural system of the office building in downtown Washington, DC consists of a few different components. The area in which this report will focus is the occupied tenant floors. These floors are characterized by flat post-tensioned slabs with drop panels around columns. The slabs are cast in place normal weight concrete. Four alternate systems will be evaluated and compared to the original system. Everyone knows DC is a concrete town, so an emphasis will be made on other concrete systems. The alternate systems:

- Two-way flat slab with drop panels and no post-tension An investigative design to compare the effect of post-tensioning on the two-way slab system using identical layouts will be performed.
- One-way pan joist slab with additional columns Additional columns will be added to force the span into a one-way condition.
- Pre-cast Pre-stressed concrete tee's A lightweight pre-cast concrete product that can be delivered to site and will help increase construction rate. The tee sections will be topped with a 2" layer of concrete to provide a clean appearance.
- Two-way waffle slab This two-way system will make up for the use of post-tension cables with an increased area of concrete.
- Cast in place slab on metal deck with steel beams. Metal decking will be installed and topped with a substantial concrete slab. This utilizes the strength of steel and the economy of concrete.

These systems will be detailed and typical sized determined. Then the pros and cons of each, both structural and non-structural, will be evaluated. Finally there will be an opportunity to decide whether or not these systems are feasible alternatives. Some of the points of structural comparison will be overall system depth, affect on lateral system design, stress and service load deflection. Non-structural considerations will be; affects to architecture, fire-rating, cost, material efficiency, LEED impact, constructability and durability.

Current design and loading

As stated before, the current design is a cast-in-place flat slab. The slab incorporates post-tensioning throughout and drop panels at columns with some thickened slab in other areas. There are critical columns around the exterior of the building where there is a 20' cantilever and spans approaching 30'. This is the area that I will assume to be a typical and therefore representative situation. Figure 1 and 2 detail layout of the current PT slab system.

SW CORNER FLOORS 6-12 (TYP.) NTS

Live load:

This area is a typical tenant occupied office. IBC 2003 calls for live load = 60 psf in offices. In addition, corridors are to be designed to 80 psf. The design team allowed corridors to be located anywhere for maximum tenant configuration. This requires that a minimum of 80 psf live load be used everywhere. There is also a 20 psf allowance for partitions to be installed. This comes to a total of 80 psf + 20 psf = 100 psf of live load distributed over the entire office floor area.

Dead load:

ASCE 7-02 is used to determine dead load allowances. Whenever possible the actual materials are used to determine dead load, instead of relying on figures for typical office construction.

Suspended plaster ceiling = 10psf

Concrete finish floor = included in structure weight Light gauge steel partitions = 4psf Floor tile or carpet = 1 psf MEP = 4psf Total superimposed dead load is estimated at 25 psf Superimposed service load = 100 psf + 25 psf = 125 psf Superimposed factored load for CRSI = 1.4(25)+1.7(100) = 205 psf

These live and superimposed dead loads will be used in the sizing of alternate floor systems. These numbers are not necessarily the ones used by the engineers for the existing design, as some assumptions were made. The factored load is the load combination necessary to use the tables in CRSI Design Handbook 2002.

Alternate Systems

Two-Way Flat Slab with Drop Panels Non-tensioned

To determine the effect of post-tensioning, the same two-way system used in the original design was calculated without the benefit of post-tensioning. Drops were designed in accordance with ACI 318. Slab design was checked by hand and using a similar bay size in CRSI Design Handbook 2002. The calculations yielded a 12.5" slab with 3.5" drops (near minimum code allowed values). The design of the slab and drops for the representative bay is shown below.

The design aids dictate the use of a 12" slab with 11" drops around columns. See appendix for reinforcing specifications. This system appears to be adequate for the loads considered. It is much lighter than the existing system but lacks much of the over-design strength. Seeing that it is very similar to the existing PT flat slab with drops, other aspects such as constructability, vibration, lateral resisting, and fire resistance will remain unaffected. See design aids for shear reinforcing specifications.

One-Way Skip-Joist

Adding columns in key spans will enable the bays to be designed as one-way systems. The area below is all open office space, so there is no architectural interference per se, just more unsightly columns. The example bay ends up being 41.25' by 19', a ratio of about 2.2:1, just out of two-way range. A common structural system to use in a one-way condition is a concrete pan skip-joist with concrete girders.

Load on joist/slab: 125 psf

Load on girder:

CRSI table 8.3 12+10+40=372 psf

DL (372 psf x 20') + (25 psf x 20') = 7.9 klf

LL (100 psf x 20') = 2.0 klf

1.4(2.0) + 1.7(7.9) = 16.23 klf

The one-way joist system selected was a 40" pan joist with 10" ribs at 50" on center. The depth of the ribs and slab are 12'' + 4.5'' = 16.5'' These joists frame into a 16.5 inch deep by 48 inch wide girder. The joist section and framing plan are shown below.

The overall structure depth for this system is only 16.5 inches. Very thick pans are needed to carry the factored loads on the structure, and in turn create a lot of additional structure weight. The thick pan ribs then create the need for very wide girders. The structure weight ends up being more than the existing system. This is not directly comparable because additional columns were added to create a one-way system, so there may not be foundation issues. The one-way joist system is very strong and stiff, so vibration will not be an issue. It is very easily constructed from metal pan forms, and economical because of the girder is the same depth as the slab and rib depth. The 4.5"

thick slab guarantees an adequate fire rating. The design aids dictate the shear reinforcing.

Pre-cast Concrete Pre-stressed Tee's

Precast structural tee's are a possible alternate system. They share the pre-stress solution used in the actual design but are cast off-site. Span = 42'

Total Load (LL + SDL) =125 psf φ Mn = 330,750 ft-lb = 28 in-k USE 32-8.6 PT section Self Wt = (150 pcf)x(6.6 sqft) = 990 lb/ft (12' section) Self Wt = 82.5 psf Precast Inverted Tee Girder Service load = (125 psf + 82.5 psf)(20') = 4150 plf USE 28IT44 (20 strand) girder

Precast double tees were chosen over hollow core planks because of their increased span capabilities. The double tees frame into inverted T girders along column lines. The girders in turn frame into columns or bearing walls (below grade). Examples of these connections are shown below.

The precast double tees seems like a very good solution, but it has one major drawback. Given the depth of the ribs and the thickness of the seat ledge of the inverted tee, the overall structure floor depth becomes and issue. The seat ledge is 16", the double tee has an over all depth of 32", and when a 2" CIP topping is added, the total depth comes to 50". That is over twice the depth of the existing system. This almost immediately rules out this alternative as a viable option. That is unfortunate because it can be erected quickly, it is lightweight, and it meets fire rating requirements. The precast beams and tees include all necessary tendons, flexure and shear reinforcing.

Two-way Waffle Slab

Waffle slabs work best in perfectly square bays. Some bays in this building are squares, and most others are very close, so this seems like a reasonable system to use. CRSI Design Handbook 2002 gives design tables for 19" domes and deeper 30" domes. The 19" domes were considered for a case with 20' by 20' bays, this was already determined

to be architecturally feasible, but not very desirable. The waffle slab is essentially a slab with joists spanning both directions spaced at either 2' for the 19" domes or 3' for the 30"

domes. Sections of each are shown below.

This pattern is continued throughout the slab until columns are encountered. Around the columns, the adjacent domes are filled solid with concrete to prevent column punching shear. The examples of 19" and 30" dome waffle slab framing are shown below.

30" DOME TWO-WAY WAFFLE SLAB

The structure weight is increased somewhat through the use of the waffle slab. Overall depth is greatly reduced through the use of waffle slab construction. The 19" dome setup has a depth of only 9". The 30" dome is somewhat deeper at 23", but does not require the addition of columns into the floor plan. See the design aids for slab and rib reinforcing. Waffle slabs are not difficult to construct but do cost extra for the dome forms. They are fairly useless as far as allowing mechanical systems to run through them because there is no linear cavity. The minimum thickness is 3" of concrete so the fire rating will be slightly less than that of the other concrete systems.

Slab on Steel Deck with Steel Beams

Everyone knows that Washington DC is a concrete city. Concrete is almost exclusively used in all construction projects. Regardless a steel system will be investigated. A common method of steel construction utilizes concrete slab on metal decking. The deck is then supported by joists and girders, or directly by girders. In this case additional joists were necessary to meet unshored clear span requirements of the deck. The deck span was reduced to 10'. A superimposed live load of 100 psf was used to determine the adequate deck. The controlling factor actually ended up being the maximum unshored clear span capable of the deck in a multi-span condition. A 2.0 SB deck was chosen with 5" max, 3" min thickness normal weight concrete slab. This decking is supported by joists at 10' which frame into girders over 20' spans.

Joist design, assume fully braced by decking

Factored load = 2.5 klf

 $\label{eq:max} \begin{array}{ll} M \mbox{ max} = 125 \mbox{ ft-k} & \phi Mn = 139 \mbox{ ft-k} \\ V \mbox{ max} = 25 \mbox{ k} & \phi Vn = 34 \mbox{ k} \\ USE \ W14x26 \mbox{ for joists} \\ Self \ wt \ (20' \ x \ 26 \ lb/ft) = .52 \ k \ / \ 2 = .26 \ k \\ Girder \ design, \ Lb = 10' \\ M \ max = 170 \ ft-k & \phi Mn = 189 \ ft-k \\ V \ max = 17 \ k & \phi Vn = 23 \ k \\ USE \ W18x35 \ for girders \end{array}$

The total structure depth at each floor for the metal deck with beams and girders comes to 5" + 13.9" + 17.7" = 36.6". This is roughly 12"-13" deeper than the existing system. The main problem is material availability. Steel is rare in Washington DC construction and therefore there are not many suppliers. Cost will also increase for this same reason. The concrete provides a floor to floor fire rating, and any exposed steel will have to be treated with fire proofing. This system is also relatively heavy because of all the intermediate framing required to hold the deck and slab. Design aids specify the use of WWF for the concrete slab.

Conclusions

Of the systems considered, the existing system, and variants thereof, displayed the most potential. Apparently the flat slab with drop panels will work just as well without the addition of post tensioning. The drops were a bit shallower which will save some structure weight, and there is no need for the specialty post-tensioning work. This will save considerably on construction costs. A one-way system was devised with the addition of columns into the office space. This was done for the purpose of incorporating a one-way design for comparison, but is not very practical for the actual application. The prestressed precast double tee beams seemed like a good solution. The only drawback was that they ended up requiring a huge floor depth. The waffle slab was also a good idea but very heavy. The total waffle depth actually ended up being slightly less than with the existing system. One steel system was looked into as well. Non-composite metal deck with a 5" concrete slab was placed on steel joists and girders. The system ended up being fairly deep and heavy. Also the fact that it is steel makes it an unlikely alternative. Some quick points of comparison are outlined in the following table.

U	0 5		L. L			0
	PT flat-slab	Flat slab	One-way	Precast	Waffle	NC steel
	with drops	with drops	Skip-joist	PT tees	slab	deck
	(existing)					
Depth	=	+	+	-	+	-
Lateral	=	=	=	=	=	-
Strength	=	-	=	=	=	+
Arch.	=	=	-	=	=	-
Fire-rating	=	=	=	=	=	-
Cost	=	+	-	+	+	-
Material	=	+	-	=	=	+
LEED	=	+	-	+	+	-
Constr.	=	+	+	+	+	-

= as good as existing system	+ better than existing	- worse than existing

Overall, the existing system of flat-slab with drop panels, but without the post-tensioning seems like the best alternative. Also the waffle slab makes a decent alternative. The precast tees would be a good alternative as well if there was a way to reduce the depth of the system.

Design Aids

CRSI Design Handbook 2002 LRFD Manual of Steel Construction PCI Design Handbook Wheeling Deck Product Catalog Nitterhouse Concrete Products Guide

Two-way flat slab with drop panels

f _c ' Gra	= 4,0 ade 60	000 p 0 Bar	si s		sq	QUARE	FLA EDGE	PANE No	AB SY L Beams	VSTEN With	V Drop	Panels				SQ	UARE Wi	th Drop No Be	Pane Pane eams	R PAN	IEL	
	Factored			(3)	R	EINFO	RCING	BARS	(E. W.)		M	OMENT	rs	Factored	(3)	REI	NFORCI	ING BA	ARS (E.	W.)	Canan
SPAN cc.	Superim- posed	Square Pa	e Drop nel	Square	Column	Col	umn Strip	1)	Middle	e Strip	Total	Edge	Bot.	Int.	posed	Column	Colum	nn Strip	Middle	e Strip	Total	Concre
$\ell_1 = \ell_2$ (ft)	Load (psf)	Depth (in.)	Width (ft)	Size (in.)	Yr	Top Ext. +	Bottom	Top Int.	Bottom	Top Int.	(psf)	(ft-k)	(#) (ft-k)	(ft-k)	(psf)	Size (in.)	Тор	Bottom	Тор	Bottom	(psf)	sq. f
				b = 12 in	. = TOT	AL SLAB	DEPTH E	ETWEE	N DROP	PANEL	s				h = 1	2 in. = T	OTAL S	LAB DEP	TH BET	WEEN D	ROP P	ANELS
30 30 30 30 30	100 200 300 400 500	7.00 9.00 9.00 11.00 11.00	10.00 10.00 10.00 10.00 12.00	12 16 19 21 24	0.808 0.707 0.763 0.661 0.766	14-#5 3 14-#5 3 15-#5 5 16-#5 3 19-#5 6	12-#7 15-#7 12-#9 17-#8 13-#10	16-#6 18-#6 22-#6 14-#8 16-#8	15-#5 10-#7 12-#7 11-#8 13-#8	13-#5 11-#6 19-#5 12-#7 11-#8	3.10 3.65 4.62 5.27 6.20	257.4 329.4 401.5 473.2 545.2	514.8 658.8 803.1 946.3 1090.4	693.0 886.8 1081.0 1273.9 1467.9	100 200 300 400 500	12 19 22 25 27	15-#6 23-#5 15-#7 16-#7 14-#8	15-#5 19-#5 17-#6 11-#8 13-#8	13-#5 15-#5 10-#7 11-#7 10-#8	13-#5 13-#5 15-#5 18-#5 11-#7	2.82 3.16 4.02 4.59 5.31	1.06 1.08 1.08 1.10
31 31 31 31 31	100 200 300 400 500	9.00 9.00 11.00 11.00 11.00	10.33 10.33 10.33 10.33 12.40	12 16 19 22 27	0.729 0.766 0.683 0.749 0.755	14-#5 2 14-#5 5 15-#5 4 18-#5 6 15-#6 4	13-#7 13-#8 13-#9 19-#8 18-#9	16-#6 15-#7 16-#7 15-#8 14-#9	16-#5 11-#7 18-#6 16-#7 12-#9	14-#5 13-#6 15-#6 18-#6 12-#8	3.12 3.96 4.76 5.68 6.78	285.7 364.7 444.4 522.9 599.3	571.4 729.3 888.7 1045.8 1198.5	769.2 981.8 1196.4 1407.8 1613.4	100 200 300 400 500	12 19 23 25 27	20-#5 26-#5 15-#7 14-#8 16-#8	12-#6 11-#7 18-#6 16-#7 12-#9	13-#5 16-#5 14-#6 13-#7 11-#8	13-#5 14-#5 12-#6 14-#6 13-#7	2.78 3.41 4.10 4.98 5.93	1.08 1.08 1.10 1.10 1.10
32 32 32 32 32 32	100 200 300 400 500	9.00 11.00 11.00 11.00 11.00	10.67 10.67 10.67 12.80 12.80	12 16 19 25 30	0.794 0.640 0.757 0.729 0.718	15-#5 5 15-#5 2 17-#5 6 20-#5 5 16-#6 4	11-#8 12-#9 18-#8 14-#10 16-#10	17-#6 15-#7 18-#7 16-#8 15-#9	13-#6 13-#7 12-#8 11-#9 13-#9	15-#5 19-#5 13-#7 12-#8 13-#0	3.33 4.27 5.16 6.21 7.14	314.9 403.4 490.7 575.3 651.1	629.9 806.8 981.3 1150.7 1302.2	847.9 1086.1 1321.0 1549.0 1752.9	100 200 300 400 500	12 19 23 26 30	16-#6 26-#5 22-#6 15-#8 17-#8	18-#5 17-#6 15-#7 11-#9 13-#9	14-#5 13-#6 12-#7 11-#8 12-#8	14-#5 15-#5 13-#6 12-#7 18-#6	2.90 3.57 4.43 5.37 6.12	1.08 1.10 1.10 1.14 1.14
33 33 33 33 33	100 200 300 400 500	11.00 11.00 11.00 11.00 11.00	11.00 11.00 11.00 13.20 13.20	12 16 21 28 33	0.678 0.743 0.747 0.721 0.680	15-#5 1 15-#5 5 19-#5 5 22-#5 6 17-#6 3	16-#7 13-#9 13-#10 15-#10 17-#10	17-#6 16-#7 15-#8 18-#8 16-#9	14-#6 18-#6 22-#6 12-#9 11-#10	12-#6 15-#6 11-#8 16-#7 14-#8	3.44 4.45 5.55 6.55 7.47	347.3 443.7 537.1 628.5 705.8	694.7 887.5 1074.2 1257.0 1411.6	935.1 1194.7 1446.0 1692.2 1900.3	100 200 300 400 500	12 19 23 26 33	16-#6 15-#7 18-#7 17-#8 15-#9	14-#6 18-#6 22-#6 12-#9 11-#1	11-#6 14-#6 13-#7 12-#8 13-#8	14-#5 12-#6 11-#7 13-#7 11-#8	2.97 3.82 4.71 5.74 6.52	1.10 1.10 1.10 1.14 1.14
34 34 34 34	100 200 300 400	11.00 11.00 11.00 11.00	11.33 11.33 11.33 13.60	12 17 24 30	0.752 0.767 0.699 0.700	16-#5 4 17-#5 6 20-#5 4 17-#6 3	14-#8 14-#9 17-#9 17-#10	19-#6 18-#7 17-#8 19-#8	12-#7 12-#8 14-#8 13-#9	13-#6 13-#7 12-#8 14-#8	3.74 4.83 5.88 7.00	380.6 485.4 584.8 681.2	761.2 970.8 1169.6 1362.3	1024.7 1306.8 1574.5 1833.9	* 100 200 300 400	12 19 23 29	18-#6 22-#6 16-#8 18-#8	22-#5 15-#7 14-#8 14-#9	12-#6 12-#7 14-#7 22-#6	15-#5 13-#6 12-#7 14-#7	3.16 4.13 5.15 6.07	1.10 1.10 1.10 1.14
35 35 35 35	100 200 300 400	11.00 11.00 11.00 11.00	11.67 11.67 11.67 14.00	12 19 26 33	0.795 0.752 0.715 0.706	16-#5 6 18-#5 6 22-#5 6 18-#6 5	12-#9 19-#8 15-#10 18-#10	16-#7 16-#8 18-#8 17-#9	13-#7 16-#7 12-#9 14-#9	14-#6 18-#6 22-#6 12-#9	3.95 4.98 6.24 7.34	415.9 528.2 636.9 734.7	831.9 1056.4 1273.8 1469.4	1119.8 1422.1 1714.8 1978.1	100 200 300 400	12 19 23 32	19-#6 18-#7 17-#8 16-#9	17-#6 22-#6 20-#7 18-#8	13-#6 13-#7 12-#8 14-#8	16-#5 20-#5 13-#7 12-#8	3.32 4.31 5.43 6.42	1.10 1.10 1.10 1.14
36 36 36	200 300 400	11.00 11.00 11.00 11.00	12.00 12.00 12.00 14.40	14 21 29 36	0.767 0.760 0.704 0.660	16-#5 6 20-#5 7 17-#6 5 27-#5 5	13-#9 17-#9 17-#10 19-#10	22-#6 16-#8 16-#9 18-#9	14-#7 14-#8 13-#9 19-#8	12-#7 12-#8 14-#8 13-#9	4.17 5.45 6.66 7.67	451.1 573.5 686.8 793.0	902.3 1147.0 1373.6 1586.1	1214.6 1544.0 1849.1 2135.1	200 300 400	12 19 25 34	16-#7 37-#5 18-#8 17-#9	14-#7 14-#8 17-#8 13-#10	20-#5 14-#7 22-#6 12-#9	17-#5 12-#7 14-#7 22-#6	3.58 4.71 5.68 6.84	1.10 1.10 1.10 1.14

		Exte	erior Colur	mn	Inte	erior Colur	mn
Square Column $c_1 = c_2$ (in.)	Slab* (or Drop) (in.)	$C_{AB} = y_t$ (in.)	$A_c = b_o d$ (in. ²)	J _c (in. ⁴)	$C_{AB} = y_t$ (in.)	$A_c = b_o d$ (in. ²)	J _c (in. ⁴)
18	6	6.50	283	13208	11.25	405	34513
	8	6.73	435	22771	12.25	637	64847
	10	6.97	603	35355	13.25	901	108166
	12	7.20	787	51553	14.25	1197	167542
	14	7.44	987	72013	15.25	1525	246366
	16	7.68	1203	97435	16.25	1885	348351
	18	7.92	1435	128570	17.25	2277	477529
	20	8.16	1683	166221	18.25	2701	638251
	22	8.40	1947	211244	19.25	3157	835190
	24	8.64	2227	264546	20.25	3645	1073338
20	6	7.17	310	17399	12.25	441	44490
	8	7.40	474	29507	13.25	689	81854
	10	7.63	654	45117	14.25	969	134095
	12	7.87	850	64868	15.25	1281	204493
	14	8.10	1062	89452	16.25	1625	396647
	16	8.34	1290	119614	17.25	2001	414478
	18	8.58	1534	156149	18.25	2409	562225
	20	8.82	1794	199905	19.25	2849	744449
	22	9.06	2070	251781	20.25	3321	966030
	24	9.30	2362	312731	21.25	3825	1232168
22	6 8 10 12 14 16 18 20 22 24	7.84 8.07 * 8.30 8.53 8.76 9.00 9.24 9.48 9.72 9.96	337 513 705 913 1137 1633 1905 2193 2497	22400 37470 56560 80353 109586 145048 187578 238069 297466 366765	13.25 14.25 15.25 16.25 17.25 18.25 19.25 20.25 21.25 22.25	477 741 1037 1365 1725 2117 2541 2997 3485 4005	56231 101617 163900 246567 353427 488608 656557 862043 1110154 1406297
24	6	8.50	364	28284	14.25	513	69880
	8	8.73	552	46765	15.25	793	124344
	10	8.96	756	69820	16.25	1105	197852
	12	9.19	976	98176	17.25	1449	294101
	14	9.43	1212	132614	18.25	1825	417107
	16	9.66	1464	173967	19.25	2233	571206
	18	9.90	1732	223121	20.25	2673	761053
	20	10.14	2016	281011	21.25	3145	991625
	22	10.38	2316	348626	22.25	3649	1268217
	24	10.62	2632	427009	23.25	4185	1596446

MIN SOT STEEL
As = 100 (8 Ag = (12.5")(
$$12^{3}/5x$$
). 6018 = .071,08 /(1
Spacinics (M.N) = 2h Z LEAST 2(12.5) = 25" & 18
18 Z LEAST 2(12.5) = 25" & 18
USE # 5 @ 12" FOR SAT
STATIC MOMENT
Mo = .394 X/N* ($2^{3}...25 + 18.75$)(36.423)² / 8
Mo = 1306.5 At-X

Thread School 849.29X ($5^{3}...536$ 636.9 AX 5" 127.38 AK/(1)
MO SPAN
4570 849.29X ($5^{3}...536$ 636.9 AX 5" 127.38 AK/(1)
MO SPAN
4570 457.3 Qx (55.676 X74.9 Qx 5" 54.08 AK/(2)
AS 0.02 100 (102.575 " 635.075 636.9 AX 5" 127.38 AK/(1)
AS 0.02 10" As = .31.07/(1)
AS 0.13" As (55.676 X74.9 Qx 5" 54.08 AK/(2)
#5 0 12" As = .31.07/(1)
AS 0.13" As (5.676 X74.9 Qx 5" 20.58 AK/(2)
#5 0 12" As = .31.07/(1)
AS 0.543.5 ...655 ...3135 ...75 = 10.81 * 10.75"
DS 13.5 ...855(4)(10) = ...45
STR26 ...855(4)(10) = ...45
MAN (mospon) = .9 As fr (2.675) = .9(.31)(60)(10.75 ...45
MAN (mospon) = .9 As fr (2.675) = .9(.31)(60)(10.75 ...45
MAN (SURDON) = .9 (3.1)(60) (141.05 ...45
MAN (SURDON) = .9 (3.1)(60) (141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(60)(141.05 ...45
MAN (SURDON) = .9 (3.1)(140.05 ...45
MAN (SURDON) = .9 (3.1)(140.05 ...45
MAN (SURDON

STRIP 2 - 40.25' 12.5" SLAB, 3.5" DROP @ 41x7' Wu= 394 15/ 222 MIN SAT STEEL As=,0018Ag= 12.5"(12m/A),0018= .27.12"/A Smin = 18" USE #5@10" FOR S+T STATIL MOMENT Mo= ,394 K/M2 (20') (40.25-2') 2 /8 M= 1441,1 A-K CS. 75%= 702.5 A.k (5' 140.5 Atk/A INT. SUPPORT CS 756- 702.5 A.K 5' 1410.5 Atk/S 6590= 936.7 A.K MS. 25%= 234. 2 A. S' 58.5 A.K/S CS. 60%= 302, 6 ft.k 5' 60.5 ft.k/ft MIDSPAN 35% = 504,4 A.h. M.S. 4090= 201, 8 A.h. 40.3 AK/A 5' #5@12" As=, 31.20°/14 d= 10,81 = 10,75" 20= 14,05" G= 145 (midspan) = 176.19 Ak/St (SMn (support) = 234,78 ftk/ft USE MIN REINFORCING 12.5" Slob u/ 3.5" Draps reinforced u/ #5C12"

One-way skip joist

105		# 4	# 4 1	#4	#5	#6	1	#4	#5-	#5	#6	#7	10
TOP	BARS NO	#4	# 4	80	10.5	115	End	10.5	10.5	9.0	10.5	12.0	Int.
	AT ADC NO	2# 4	2# 5	2# 5	2# 5	2# 6	Span .	2#4	2#5	2#5	2#5	2# 6	Defl.
DQ1	OVI CARS NO	2# 4	1# 5	1#6	2# 5	1#7	Coeff.	1# 4	1# 5	1# 6	2# 5	1# 7	Coeff.
BAH		60	80	1.04	1.23	1.50	(2)	.47	.47	.47	.47	.47	(2)
SIE	L (PSF)	.00	.05	ENIC	SDAN	1.00		1.11	11	NTERIC	R SPA	N	
CL	EAR SPAN		640	207	1021	1202	1 265	577	1167	1397	1722	2131	.779
	24'-0" (3)	#2 25	#3.75	#3- 86	#3- 98	#3-105	1.200	#3- 48	#3- 82	#3- 90	#3- 85	#3-107	
	25'-0"	175	549	694	900	1160	1.490	491	1035	1246	1546	1924	.917
	STIR	#3-20	#3-74	#3-86	#3-99	#3-111		#3- 45	#3-83	#3-91	#3-93	#3-110	. 070
	26'-0"	122	468	602	793	1033	1,743	415	917	1113	1390	#2 112	1.073
	STIR		#3-72	#3-85	#3- 99	#3-112	2.027	#3- 43	#3- 83	#3- 92	#3-100	1575	1 247
	27'-0"	75	390	521 #2 95	#3-100	920	2.021	#3- 40	#3- 83	#3- 93	#3-103	#3-115	114-11
	202 A"	34	#3-71	448	612	819	2.344	286	719	888	1127	1428	1.443
	STIB		#3- 69	#3-84	#3-100	#3-115		#3-37	#3-83	#3-94	#3-105	#3-117	
	29'-0"		274	382	535	728	2.698	231	635	792	1015	1296	1.660
	STIR		#3- 67	#3-83	#3-100	#3-116	0.000	#3-33	#3-83	#3-94	#3-106	#3-105	1 001
	30'-0"		222	323	466	646	3.090	182	#3_83	#3_ 94	#3-107	#3-112	1.501
	STIR		#3- 64	73-81	#3-100	#3-117	3 5 2 3	#3- 23	491	628	823	1069	2.168
	31'-0" CTID		#3-61	#3-80	#3-100	#3-118	0.020	#3-25	#3-82	#3- 95	#3-108	#3-120	
	32'.0"		132	221	346	505	4.000	97	429	558	740	971	2.461
	STIR		#3- 58	#3- 78	#3- 99	#3-119	1000000	#3-20	#3-81	#3-94	#3-109	#3-122	0.70
	33'-0"		93	176	294	443	4.523	60	372	493	#2 110	#2 124	2.7.64
	STIR		#3- 55	#3-76	#3- 98	#3-119	5.007	#3- 10	#3- 00	#3- 34 A3A	596	801	3 137
	34'-0"		5/ #3 51	#3_ 73	#3. 97	#3-119	5.057		#3-79	#3- 94	#3-110	#3-125	
	251.0"		#0= 01	99	204	336	5.724		273	381	533	726	3.522
L	STIR		1	#3-70	#3-96	#3-119			#3-77	#3-93	#3-111	#3-127	
	36'-0"			65	164	289	6.407		229	331	476	658	3.942
	STIR			#3- 67	#3- 94	#3-119			#3- 75	#3- 92	#3-111	#-128	1
	BEIMPHES	PF	ROPER	TIES F	OR D	ESIGN	(CON	CRETE	.60 C	F/SF)		Sin.	5.1.16
NEC	SATIVE MOMENT							12:2				0.50	
STE	EL AREA (SQ. IN.)	.83	1,11	1.25	1.48	1.91		.95	1.48	1./2	2.10	2.50	
AC	TUAL STEEL %	.503	.671	.755	.895	1.166		.575	.895	1.045	1.2/7	1.531	
EFF	E DEPTH, IN.	14.75	14.75	14.75	14.69	14.63		14.75	14.69	14.69	14.63	14.50	
- 10	CR/IGR	.128	.161	.177	.199	.239		.142	.199	.223	,230	201	
000	SITIVE MOMENT												
ett	FLAREA (SO IN)	60	.93	1.06	1.24	1.48		.60	.93	1.06	1.24	1.48	
	TUAL STEEL %	.353	.549	.627	.732	.879		.353	.549	.627	.732	.879	
EF	E DEPTH, IN,	14.75	14.69	14.66	14.69	14.60	1	14.75	14.69	14.66	14.69	14.60	
+1	CR/IGR	.116	.171	.192	.222	.257		.116	.171	.192	.222	.257	
		1	Children of	1000.000		Private State				(161.5	Contraction of the	1	

(a) Single leg stirrup size space at X in. c.-c. Distance over which stirrups must extend from face of support at each end (in.).

8-59

ST	TEM		BAP	IS ⁽¹⁾									TOTA	LCA	PACITY	U = 1	.4D +	1.7L ³³	2	_						+du	Tr
	6	BOT	том	Lay-	TOP		SPAN	1. la =	= 16 f	t		SPAN	i, (n =	= 18 f	t	T	SPAN	I. I. =	20 P	t	1	SPAN	. la -	= 22 f	t	- Φ M ₀	
in.	in	l _n + 12 in.	0.875	ers (2)		LGAD (4) k/ft	STIR. TIES (5)	¢T _n ft- kips	Af sq.	STEEL WGT Ib.	L0AD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Af sq.	STEEL WGT Ib.	LOAD (4) K/R	STIR. TIES (5)	φT _a ft- kins	Aľ sq.	STEEL WGT	LOAD (4)	STIR. TIES (5)	φT _n ft-	Al sq.	STEEL WGT	(6) ft-kip	,
		2# 7	1# 7	1	4# 7	6.1	103E 193C	10 41	1.3	248 347	4.8	103E 223C	10 40	1.3	270 395	3.9	103E 243C	10 39	.m. 1.3	292 435	3.2	103E 263C	10 39	1.3	314 474	108	t
	24	2# 8	2# 9	1	4#9	8.8	113E 144E 154D 165D	10 41 10 41	1.3 1.3	341 510 620 877	6.9	123E 224C 163D 185D	10 40 10 40	1.3	380 682 582 986	5.6 8.9	133E 244C 173D 204D	10 39 10 39	1.3 1.3	420 749 641 874	4.6 7.3	133E 263C 183D 224D	10 39 10 39	1.3 1.3	453 593 700 961	140 224 224 322	
		2# 8	2# 5	1	4#11	13.9	154D 165D	10 41	1.3	620 877	11.0	163D 185D	10 40	1.3	582 986	8.9	173D 204D	10 39	1.3	641 874	7.3	183D 224D	10 39	1,3	700 961	224 322	Ļ
		2# 9	2# 9	1	5# 6 5#10	9.1	323A 133D 165D	71 18 70	2.0	337 596 526 958	11.5	103E 363A 143D 184D	17 69 17 69	2.0	370 670 586 849	5.8 9.3	N/A 403A 153D 204D	17 68 17 68	1.9 1.9	325 744 646 942	4,8 7,7	N/A 443A 163D 443A	17 67 17 67	1.9	357 818 706 1045	145 231 233 351	
	36	3# 9	3# 9	1	5#11 5#14	21.0	144D 165D 154D 325A	18 70 18 70	2.0 2.0	747 1070 927 1786	14.1 16.6	154D 185D 164D 185D	17 69 17 69	1.9 1.9	828 1202 1029 1388	11,4 13,5	163D 205D 174D 205D	17 68 17 68	1.9 1.9	793 1334 1131 1541	9.5 11.1	173D 225D 184D 225D	17 67 17 67	1.9 1.9	866 1467 1232 1694	285 417 336 551	
		3#7 3#8	3# 7 3# 8	1 1 1	6# 9 6#10	13.6 17.5	103E	26 102 26	42	482 395 692	10.7 13.8	113E 123E	25 100 25	4.3	539 444 674	8.7 11.2	113E 133E	25 99 25	0.0	588 493 745	7.2 9.3	N/A 133E	24 98 24	0.0	541 541 807	217 346 280	Γ
	88	4# 9 4# 9	3# 9 4# 9	1	7#11 6#14	24.9 28.0	145D 325A 155D	25 102 25	2.6	969 1125 1969 1286	19.7 22.2	164D 185D 165D	100 25 100 25	2.6	1092 1110 1528 1421	15.9	174D 205D 174D	99 25 99 25	4.1 2.5	633 1219 1696 1386	13.2 14.8	184D 265C 184D	97 24 97 24	4.1	695 1328 2016 1512	427 398 579 448	
				,			3,25M	102	2.6	2102		365A	100	2.6	2363		405A	99	2.5	2624		2250	97	2.5	2048	678	
(1) S (2) Ir	ee "Re se tabu	icomme lated be	nded Barn dept mn, first	ar Dei 51 — 2 Lline is	tails", Fi inches (s numbe	g. 12-1. (b — 2°) er of laye	For gire	ders,	(5) Fr fre si	ar each be se ends, u ze and sp	Jam desi ise stimu acing tat	gn, first i ps tabula sulated. F	ine is for	lor ope r "Inter rup no	in stirrups ior Spans	, secondii ". For b >	ine is for 24 in., p	closed provide	ties. 1	See Fig. 1 s (two stin	12-4. At rups) of	(6) +¢	M, an	rd —¢	M, are d	Jesign n tangulär	no

Two-way waffle slab

Span C.C. (n) (n) Span Figure (n) Span (n) (n) Span (n) (n) Span (n) (n) Span (n) (n) Span (n) Span (n)										Reinforrin	n Rars	Fach	Directi	0									Reinforcin	g Bars-	Each I	Directio	n	
Span Factor Factor Factor Top Bottor Top Bottor No No <th< th=""><th></th><th></th><th></th><th></th><th>Sour</th><th>re Edge (</th><th>Column</th><th></th><th>Col</th><th>umn Strip</th><th>g cars</th><th>court</th><th>Midd</th><th>e Strij</th><th></th><th>,</th><th>Acments</th><th></th><th></th><th>S</th><th>quare or Column</th><th></th><th>Column Strip</th><th></th><th></th><th>Midd</th><th>e Strip</th><th>,</th></th<>					Sour	re Edge (Column		Col	umn Strip	g cars	court	Midd	e Strij		,	Acments			S	quare or Column		Column Strip			Midd	e Strip	,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Span cc.	Factored Super-	(1)				Тор		Bottom	Тор	1	Bottom	T	Тор	м		-11	(1)				Bottom	Тор	8	Bottom		Тор
Total Depth = 23 h. No Depth = 20 h. Total Sub Depth = 3 h. Total Sub Depth = 3 h. Total Sub Depth = 20 h. <th></th> <th>$\ell_1 = \ell_2$ (ft)</th> <th>Load (psf)</th> <th>Steel (psf)</th> <th>c₁ = c₂ (in.)</th> <th>¥</th> <th>(2) Stirrups</th> <th>Edge No size +</th> <th>No. Ribs</th> <th>Bars per Rib</th> <th>No size</th> <th>No. Ribs</th> <th>Long Bars</th> <th>Short Bars</th> <th>No size</th> <th>Edge (ft-k)</th> <th>Bot. (ft-k)</th> <th>lint. (ft-k)</th> <th>Steel (psf)</th> <th>C1 = C2 (in.)</th> <th>(2) Stirrups</th> <th>No. Ribs</th> <th>Bars per Rib</th> <th>No size</th> <th>No. Ribs</th> <th>Long Bars</th> <th>Short Bars</th> <th>No size</th>		$\ell_1 = \ell_2$ (ft)	Load (psf)	Steel (psf)	c ₁ = c ₂ (in.)	¥	(2) Stirrups	Edge No size +	No. Ribs	Bars per Rib	No size	No. Ribs	Long Bars	Short Bars	No size	Edge (ft-k)	Bot. (ft-k)	lint. (ft-k)	Steel (psf)	C1 = C2 (in.)	(2) Stirrups	No. Ribs	Bars per Rib	No size	No. Ribs	Long Bars	Short Bars	No size
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	otal Depth = 23 in.	Rit	Depth	= 20 in.	Т	otal Slab De	opth = 3 in.											Total 0	Depth =	23 in.	R	Depth = 20 in.		fotal Si	ab Deç	nth = 3	in.
32.0° 90 237 6 0.640 25.46-0 5 145.811-16 25.46 6 15 10.55 22.28 16 5 2.46 6 15 26.75 26.46 16 0.61 27.46 6 15 145 11.65		30'- 0" D=12:500 RIB ON COLUMN LINE 1.048 CF/SF	50 100 150 200 300 400 500	2.27 2.27 2.34 2.48 3.02 3.79 4.33	15 15 15 15 15 15 15 15 15	0.641 0.641 0.669 0.735 0.817 0.642		22-45+ 0 22-45+ 0 22-45+ 0 22-45+ 0 22-45+ 0 22-45+ 0 22-45+ 1	~~~~~~~	2-#5 2-#5 1-#5 and 1-#6 1-#6 and 1-#7 1-#7 and 1-#8 1-#8 and 1-#9 2-#9	22-#5 22-#5 22-#5 22-#5 27-#5 *23-#6 27-#6	******	おおおおおい	55555678	9-45 9-45 9-45 9-45 9-45 9-45	200 240 280 320 401 482 562	399 480 592 732 994 1248 1496	537 646 754 863 1080 1297 1514	225 225 225 260 326 3.81	15 15 15 15 15 15	1	00000000	2-45 2-#5 2-#5 2-#5 2-#6 2-#7 1-#7 and 1-#8	22-85 22-85 22-85 22-85 22-85 22-85 25-85 25-85	55555555	转转转转转移	药肟药药药酸	9.4 9.4 9.4 9.4 10.4 12.4
36:0° D12200 50 100 274 24 18 18 0.637 0.1200 2745 146 6 146 2745 146 7 45 45 1145 310 340 623 146 523 15 15 15 5 146 2745 146 7 45 7 45 5 146 1145 310 623 146 5 146 146 310 644 533 223 16 5 145 2745 7 45 5 5 1145 310 223 16 5 145 2745 7 45 5 5 1145 310 233 233 16 5 145 244 7 45 45 1145 310 244 16 5 145 244 7 45 45 1145 310 233 233 15 5 145 244 7 45 45 46 1145 313 233 15 15 145 244 7 45 45 47 45 47 45 47 45 47 45 47 45 47 <th< td=""><td></td><td>33'- 0" D=12.500 RIB ON COLUMN LINE 1.02 CF/SF</td><td>50 100 150 200 300 400</td><td>2.37 2.43 2.56 2.90 3.60 4.46</td><td>16 16 16 16 16</td><td>0.640 0.661 0.697 0.733 0.804 0.641</td><td></td><td>25-45+0 25-45+0 25-45+0 25-45+0 25-45+0</td><td>50000</td><td>1-#5 and 1-#5 2-#6 1-#6 and 1-#7 1-#7 and 1-#8 1-#8 and 1-#9 1-#9 and 1-#10</td><td>25-45 25-45 29-45 26-46 31-46</td><td>000000</td><td>សុសុសុសុស្ ភូសុសុសុស្</td><td>お 5 5 5 5 5 5 5 5 7 7 7</td><td>10-45 10-45 10-45 12-45 12-45</td><td>263 317 370 424 532 639</td><td>526 633 774 961 1310 1647</td><td>708 852 997 1142 1432 1721</td><td>2.29 2.29 2.40 2.57 3.10 3.99</td><td>16 16 16 16 16 16</td><td>ţ</td><td>~~~~~</td><td>2-#5 2-#5 1-#5 and 1-#6 2-#6 2-#7 2-#8</td><td>25-45 25-45 27-45 24-46 29-46</td><td>0000000</td><td>动物的药物</td><td>朽朽朽朽</td><td>10-4 10-4 10-4 10-4 11-4 13-4</td></th<>		33'- 0" D=12.500 RIB ON COLUMN LINE 1.02 CF/SF	50 100 150 200 300 400	2.37 2.43 2.56 2.90 3.60 4.46	16 16 16 16 16	0.640 0.661 0.697 0.733 0.804 0.641		25-45+0 25-45+0 25-45+0 25-45+0 25-45+0	50000	1-#5 and 1-#5 2-#6 1-#6 and 1-#7 1-#7 and 1-#8 1-#8 and 1-#9 1-#9 and 1-#10	25-45 25-45 29-45 26-46 31-46	000000	សុសុសុសុស្ ភូសុសុសុស្	お 5 5 5 5 5 5 5 5 7 7 7	10-45 10-45 10-45 12-45 12-45	263 317 370 424 532 639	526 633 774 961 1310 1647	708 852 997 1142 1432 1721	2.29 2.29 2.40 2.57 3.10 3.99	16 16 16 16 16 16	ţ	~~~~~	2-#5 2-#5 1-#5 and 1-#6 2-#6 2-#7 2-#8	25-45 25-45 27-45 24-46 29-46	0000000	动物的药物	朽朽朽朽	10-4 10-4 10-4 10-4 11-4 13-4
371 57 0015300 001500 001500 001500 0015000 0015000 0015000 00150000 001500000000		36'- 0" D=12.500 RIB ON COLUMN LINE 0.998 CF/SF	50 100 150 200 300	2.42 2.54 2.82 3.18 4.21	18 18 18 18 18	0.637 0.676 0.717 0.758 0.868		27-15*0 27-15*0 27-15*0 27-15*0 27-15*6 27-15*6	55555	2-#6 1-#6 and 1-#7 1-#7 and 1-#8 2-#8 1-#9 and 1-#10	27-#5 28-#5 33-#5 27-#6 34-#6	77777	#5 #5 #5 #6	15月15日	11-45 11-45 11-45 12-45 11-46	337 407 476 546 685	674 814 966 1210 1660	908 1095 1283 1470 1845	2.29 2.39 2.57 2.89 3.77	18 18 18 18 18		0.0.0.0	2-#5 1-#5 and 1-#6 2-#6 1-#6 and 1-#7 2-#8	27-#5 27-#5 30-#5 25-#6 31-#6	7 7 7 7 7	动药药药	打药药药	11- 11- 11- 11- 10-
		B91 67 DETS 500 RIB NOT DA COLUMN I ME 1 036-CF-55	50 100 150 300	2.49 2.79 3.11 3.80 4.91	19 19 19 19 19 19	0.570 0.715 0.789 0.848 0.637		29-#5+ 0 29-#5+ 0 29-#5+ 4 29-#5+ 8 30-#5+ 6	6666	1-#6 and 1-#7 2-#7 1-#7 and 1-#8 1-#8 and 1-#9 2-#10	30-#5 36:#5 30-#6 34:#6 44-#6	77777	药药药药	約約約78	12-#5 12-#5 14-#5 11-#6	437 526 614 703 880	874 1051 1230 1544 2117	1176 1415 1654 1893 2371	2.28 2.50 2.84 3.42 4.31	19 19 19 19	ţ	00000	2-#5 1-#5 and 1-#6 2-#6 2-#7 2-#8	29-45 33-45 28-46 32-46 40-46	77777	防药药药	朽朽朽枯	12- 12- 13- 15- 13-
47:0° 50 27.2 21 0.600 31:45*0 6 2.47 37.45 8 85 85 13:45 539 1078 1652 255 21 6 2.465 8 85 85 15:45 601 1000 17:30 291 16 2.465 8 85 85 16:35 15:45 601 1000 17:30 291 16 1:46 81 85 85 15:45 600 1000 17:30 291 16 1:46 81 85 85 85 16 1:46 1:47 234:8 8 85 85 1:46 1:47 231 21 16 2:46 8 85 87 1:46 81 1:47 234:8 8 85 1:47 244 1:43 244 1:43 245 31 21 1 6 2:465 84 85 87 1:46 216 1:47 234 31 21 </td <td></td> <td>42'- 0* D=15,500 RIB NOT ON COLUMN LINE 1.015 CF/SF</td> <td>50 100 150 200</td> <td>2.72 3.20 3.64 4.26</td> <td>21 21 21 21</td> <td>0.680 0.748 0.822 0.880</td> <td></td> <td>31-#5* 0 31-#5* 2 31-#5* 7 31-#5*12</td> <td>6 6 6</td> <td>2-#7 2-#8 1-#8 and 1-#9 1-#9 and 1-#10</td> <td>37-#5 32-#6 37-#6 43-#6</td> <td>8 8 8</td> <td>#5 #5 #6 #6</td> <td>药枯肟打</td> <td>13-45 15-45 12-86 14-86</td> <td>539 650 760 871</td> <td>1078 1300 1521 1844</td> <td>1452 1750 2047 2345</td> <td>2.55 2.91 3.31 3.82</td> <td>21 21 21 21</td> <td>ļ</td> <td>6966</td> <td>2-#6 1-#6 and 1-#7 2-#7 1-#7 and 1-#8</td> <td>34-45 29-46 35-#6 40-#6</td> <td>8 8 8 8</td> <td>转转转</td> <td>おおお</td> <td>13- 14- 16- 13-</td>		42'- 0* D=15,500 RIB NOT ON COLUMN LINE 1.015 CF/SF	50 100 150 200	2.72 3.20 3.64 4.26	21 21 21 21	0.680 0.748 0.822 0.880		31-#5* 0 31-#5* 2 31-#5* 7 31-#5*12	6 6 6	2-#7 2-#8 1-#8 and 1-#9 1-#9 and 1-#10	37-#5 32-#6 37-#6 43-#6	8 8 8	#5 #5 #6 #6	药枯肟打	13-45 15-45 12-86 14-86	539 650 760 871	1078 1300 1521 1844	1452 1750 2047 2345	2.55 2.91 3.31 3.82	21 21 21 21	ļ	6966	2-#6 1-#6 and 1-#7 2-#7 1-#7 and 1-#8	34-45 29-46 35-#6 40-#6	8 8 8 8	转转转	おおお	13- 14- 16- 13-

				-	SQUA	ARE ED	GE	PANELS		- 11									SOU	ARE	INTERIO	R PA	irad NEL	e 60 .S	ва	rs
								Reinforcin	ng Bars-	-Each	Direct	ion								Γ	Reinforcin	ig Bars-	Each	Directi	on	
Span	Factored		Squa	ire Edge	Column		Col	lumn Strip			Midd	le Stri	p		Moment	s		Interio	iquare or Column		Column Strip)		Midd	lle Stri	p
CC. Columns	Super- imposed	(1)			(2)	Top Edge		Bottom	Top		Bottom		Top	-M	+M	-M	(1)		(7)		Bottom	Top		Bottom	i.	To
ℓ1 = ℓ2 (ft)	Load (psf)	Steel (psf)	c1 = c2 (in.)	Y	Stirrups	No size +	No. Ribs	Bars per Rib	No size	No. Ribs	Long Bars	Short Bars	No size	Edge (ft-k)	Bot. (ft-k)	Int. (ft-k)	Steel (psf)	c ₁ = c ₂ (in.)	Stirrups	No. Ribs	Bars per Rib	No size	No. Ribs	Long Bars	Short Bars	No
Total Depth = 11 in.	Rb	Depth	= 8 in.	T	otal Slab D	epth = 3 in.	-			-							Total I	Depth =	11 in.	Ri	b Depth = 8 in.	1	fotal S	lab De	pth = 3	in.
14"- 0" D= 6.417 RIB NOT ON COLUMN LINE 0.599 CF/SF	50 100 150 200 300 400	225 225 225 225 225 225 225	12 12 12 12 12 12 12	0.629 0.636 0.656 0.677 0.717 0.758		10+#5+ 0 10+#5+ 0 10+#5+ 0 10+#5+ 0 10+#5+ 0 10+#5+ 0	444444	2+#4 2+#4 2+#4 2+#4 2+#4 2+#4	10.45 10.45 10.45 10.45 10.45 10.45	000000	222222	222222	445 445 445 445 445 445	13 17 20 24 32 40	26 35 48 60 84 107	34 45 55 65 107	2.20 2.20 2.20 2.20 2.20 2.20 2.20	12 12 12 12 12 12		444444	2-44 2-44 2-44 2-44 2-44 2-44 2-44	10-#5 10-#5 10-#5 10-#5 10-#5	~~~~~	*****	*****	44444
16"- 0" D= 6.417 RIB NOT ON COLUMN LINE 0.582 CF/SF	50 100 150 200 300 400	2.30 2.30 2.30 2.30 2.39 2.47	12 12 12 12 12 12	0.694 0.716 0.739 0.761 0.806 0.850		12+85+ 0 12+85+ 0 12+85+ 0 12+85+ 0 12+85+ 0 12+85+ 0 12+85+ 0	444444	2-84 2-84 2-84 1-#4 and 1-#5 2-#5	1245 1245 1245 1245 1245 1245	444444	11111111	448444	5555555 555555 555555	19 25 31 37 48 60	38 52 72 90 126 162	52 67 83 99 130 162	2.26 2.26 2.26 2.26 2.26 2.26 2.26	12 12 12 12 12 12	3\$41	****	2-84 2-84 2-84 2-84 2-84 2-84	12-#5 12-#5 12-#5 12-#5 12-#5 12-#5	444444	1122212	****	666666
18'- 0' D= 6.417 RIB NOT ON COLUMN LINE 0.571 CF/SF	50 100 150 200 300 400	2.25 2.25 2.25 2.33 2.58 2.84	12 12 12 12 12	0.734 0.760 0.787 0.813 0.865 0.630		13-#5+ 0 13-#5+ 0 13-#5+ 0 13-#5+ 0 13-#5+ 0 13-#5+ 0	444444	2-#4 2-#4 1-#4 and 1-#5 1-#5 and 1-#6 2-#6	13-#5 13-#5 13-#5 13-#5 13-#5 14-#5	0000000	*****	****	5-15 5-15 5-15 5-15 5-15 5-15	28 36 44 53 70 87	55 75 103 130 182 233	74 97 120 143 188 234	2.21 2.21 2.21 2.21 2.36 2.49	12 12 12 12 12 12	3 \$ 4 1 3 \$ 4 1	444444	2+#4 2-#4 2-#4 1-#4 and 1+#5 2-#5	13-#5 13-#5 13-#5 13-#5 13-#5 13-#5	555555	***	****	****
20'- 0" D= 8.417 RIB ON COLUMN LINE 0.590 CF/SF	50 100 150 200 300 400	2.28 2.28 2.36 2.45 2.80 3.48	12 12 12 12 12	0.788 0.816 0.844 0.872 0.630 0.627		15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0	000000	2-#4 2-#4 1-#4 and 1-#5 2-#5 1-#6 and 1-#7	15-#5 15-#5 15-#5 15-#5 15-#5 14-#6	000000	111111111111	建筑装装行的	6:45 6:45 6:45 6:45 6:45 6:45	39 50 62 74 97 120	78 105 145 182 254 323	104 136 168 199 262 323	2.25 2.25 2.25 2.39 2.99	12 12 12 12 12 12	3 \$ 4 1 3 \$ 4 1	555555	2-44 2-44 2-44 2-44 1-84 and 1-85 1-85 and 1-85	15-#5 15-#5 15-#5 15-#5 15-#5 18-#5		****	****	666666
22-07 0:86.07 886.08 COUMM UNE 0.579 CF-55	50 100 160 300 400	2.25 2.25 2.40 2.56 3.26 3.87	12 12 12 12 14	0.818 0.850 0.882 0.914 0.627 0.623	3 \$ 4 1	16-#5+ 0 16-#5+ 0 16-#5+ 0 16-#5+ 0 16-#5+ 0 16-#5+ 0	0000000	2-#4 2-#5 2-#5 1-#5 and 1-#6 1-#6 and 1-#7 2-#7	16-#5 16-#5 16-#5 15-#6 18-#6	000000	84 84 85 85	14 14 14 14 15 16	7-165 7-165 7-165 7-165 8-165 8-165	52 68 83 99 130 156	103 140 193 243 337 392	139 182 224 267 349 419	2.23 2.23 2.35 2.81 3.47	12 12 12 12 12 12 12	3 \$ 4 1 3 \$ 4 1 3 \$ 4 2	555555	2-#4 2-#4 2-#4 1-#4 and 1-#5 1-#5 and 1-#6 2-#6	16-#5 16-#5 16-#5 19-#5 17-#6	0.00000	2222222	222225	7-4 7-4 7-4 7-8
(Continued on n	ext page)																									

Precast PT Tee's

DESIGN DATA

- DESIGN DATA 1. Precast strength © RELEASE = 3000 PSI. (min.) 2. Precast strength © 28 days = 6000 PSI. 3. Precast Density = 150 PCF 4. Strand = $0.6^{\circ} 270k \ \text{LO-relaxation.}$ 5. Topping Density = 150 PCF 7. Maximum bottom tensile stress is $12\sqrt{fc}$ =930 PSI. 8. All superimposed load is treated as live load in the flexural strength analysis. 9. Flexural capacity is based on stress/strain strand relationships. 10. Maximum moment capacity is critical at midspan for parallel stronds and is critical near 0.4 span for draped strands.
- draped strands. 11. All loads shown refer to allowable loads after the topping has hardened.

			Tat	ole o	of So	ife S	Supe	rimp	osec	: Lo	ads	(Ibs.	per	sq.	. ft.))						
Fastian	ØM _n										Spar	n în	Feet									
Section	(in. Kips)	46	48	50	52	54	56	58	60	Б2	64	66	68	70	72	74	76	78	80	82	84	85
32-6.6 PT	9,334	76	64	54	45	36																
32-8.6 PT	11,900	116	101	88	76	66	56	48	40	33												
32-10.6 PT	14,322	153	135	119	105	92	81	71	62	53	46	39	33									
32-12.6 PT	16,423	185	165	146	130	116	103	91	81	71	63	55	48	41	35	30						
32-14.6 DT	20,943	256	230	206	186	167	151	136	123	110	99	89	80	72	64	57	51	45	39	33		
32-16.6 DT	22,860							161	146	132	120	109	99	88	78	69	60	53	48	42	38	33
32-18.5 DT	24,485													105	94	84	75	66	58	51	44	39

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

MD 5N 5/94

2655 MOLLY PITCHER HWY. SDUTH, BOX N CHAMBERSBURG, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

INVERTED TEE BEAMS

			Sectio	n Prope	rties			
Designation	h in.	h ₁ /h ₂ in.	A In ²	l in4	y⊳ in.	S _b in ²	S, in ³	wt pif
28/T20	20	12/8	368	11,688	7.91	1,478	967	383
28IT24	24	12/12	480	20,275	9.60	2,112	1,408	500
28IT28	28	16/12	528	32,076	11.09	2,892	1,897	550
28/T32	32	20/12	576	47,872	12.67	3,778	2,477	600
28IT36	36	24/12	624	68,101	14.31	4,759	3,140	650
28IT40	40	24/16	736	93,503	15.83	5,907	3,869	767
28/744	44	28,16	784	124,437	17.43	7,139	4,683	817
28/T48	48	32/16	832	161,424	19.08	8,460	5,582	867
28IT52	52	36/16	880	204,884	20.76	9,869	6,558	917
28IT56	56	40/16	928	255,229	22.48	11,354	7,614	967
28/T60	60	44/16	976	312,866	24.23	12,912	8,747	1,017

Normal Weight Concrete

1. Check local area for availability of other sizes.

Sale loads shown include 50% superimposed dead load and 50% live load, 800 psi top tension has been allowed, therefore additional top reinforcement is required.

Key 6,929 — Safe superimposed service load, plf 0.3 — Estimated camber at erection, in. 0.1 — Estimated long-time camber, in,

3. Sale loads can be significantly increased by use of structural composite topping.

Table of safe superimposed service load (plf) and cambers

Desig-	No.	1.1.1	1.11								Spa	n, π								
nation	Strand	e	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
	2.1	4.090	6929	5402	4310	3502	2887	2409	2029	1723	1473	1265	1091							
28IT20	9	5.82	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.7	0.8	0,8							
		121 251	1.0	0.1	0.1	0.1	.0.1	0.1	0.0	0.0	0.0	-0.1	-0.1							
			9714	7580	6054	4925	4066	3396	2868	2440	2090	1799	1556	1351	1175	1024				
28IT24	11	6.77	0.2	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8				
		1.11	1.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	-0.2				
				1.0	8505	6951	5768	4848	4118	3529	3047	2648	2313	2030	1788	1579	1399	1242	1103	981
28IT28	13	8.44			0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1
11.21	· · · · · · · · · · · · · · · · · · ·	A 2.7		12.23	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.0	-0.1
						9202	7846	6435	5474	4698	4064	3538	3097	2724	2406	2132	1894	1687	1505	1345
28IT32	15	9.17				0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.9
	120.0	1.1				0.1	0.1	0.1	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1
	- C.							8485	7236	6227	5402	4718	4145	3660	3246	2890	2581	2311	2075	1866
28IT36	16	10.81	1					0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9
		1						0.1	0.1	0.1	Q.1	D.1	0.1	0.1	0,1	0.1	0.0	0.0	0.0	-0.1
1.1									8615	7415	6433	5620	4938	4361	3868	3444	3077	2756	2475	2226
28IT40	19	11.28	1						0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.8	0.9
	10 11	1.1.1.1							0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0
										9308	8092	7083	6239	5524	4913	4388	3932	3635	3186	2879
281744	20	12.89								0.4	0.5	0.5	0.5	0.6	6.6	0.7	0.7	0.8	0.B	0.8
	2012.1	200								0.1	0.1	0.1	0.1	0.1	¢.4	0.1	0.1	0.1	0.1	0.0
											9741	8539	7532	6680	5952	5326	4783	4310	3894	3528
28IT48	22	14.16									0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.8
		-									0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
- 1. <u>/ 1.</u>													8935	7934	7080	6345	5707	5151	4664	4233
28IT52	24	15.44											0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8
													0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		-												9284	8294	7442	6703	6059	5493	4994
28IT56	26	16.74												0.5	0.6	0.6	0.7	0.7	0.8	0.8
														0.1	0.1	0.1	0.1	0.1	0.1	0.1
															9590	8613	7766	7027	6379	5807
281160	28	18.04	-												0.6	0.6	0.6	0.7	0.7	0.8
															0.1	0.2	0.2	0.2	0.2	0.2

2 - 44

PCI Design Handbook(Fith Edition

Steel deck, joists, and girders

2.0 SB Normal Weight

145 pcf Normal Weight Concrete

Wheeling Composite Deck

	/	1	A	1	4
¥ [14	1	10	1/2	
120	2-02	20th			SLAB DEPTH
2 4	24" 24"	Cover	ver	>	

	Gage	t in	Wd psf	Sp in ³	Sn in³	lp in⁴	In in ⁴	As In²	Fy ksi						
SLAB A	22	0.0295	2.0	0.257	0.258	0.317	0.309	0.472	50						
DEPTH	20	0.0358	2.3	0.334	0.337	0.402	0.393	0.573	50						
	18	0.0474	3.0	0.507	0.517	0.557	0.552	0.759	40						
	16	0.0600	3.7	0.659	0.663	0.705	0.705	0.961	40						
			-						_						

Section Properties (per ft. of width)

Total Slab Depth D	Gage	Maximum Unshored Clear Spans			Composite Properties		Superimposed Live Loads - psf: No Studs												
Wt. Conc.		Single Double Span Span	Double	Triple	lavg	Sc	Span - Feet and Inches												
Area Conc.			Span	in4/ft	in³/ft	7'-0"	7'-6"	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	10'-6'	11'-0"	11'-6"	12'-0"	12'-6"		
	22	7'-1"	9'-1"	9'-4"	5.519	1.081	358	308	266	232	204	179	159	141	125	112	100	90	
4-1/2"	20	8'-3"	10'-4"	10'-9"	5.917	1.288	400	372	323	283	248	220	195	174	155	139	125	113	
42.3 psf	18	9'-3"	11'-5"	11'-10"	6.586	1.653	400	383	332	290	255	226	200	179	160	143	129	116	
29.6 in ²	16	10'-9"	12'-11"	13'-0"	7.219	2.02	400	383	332	290	255	226	200	179	160	143	129	116	
	22	6'-9"	8'-7"	8'-11"	7.481	1.277	400	365	316	276	242	213	189	168	149	134	120	107	
5"	20	7'-10"	9'-11"	10'-3"	8.006	1.522	400	400	383	335	295	261	232	207	185	166	149	135	
48.3 ost	18	8'-9"	10'-11"	11'-3"	8.889	1.954	400	400	394	345	304	269	239	213	191	171	154	139	
33.8 in2	16	10'-2"	12'-4"	12'-8"	9.733	2.394	400	400	394	345	304	269	239	213	191	171	154	139	
	22	6'-5"	8'-3"	8'-7"	9.863	1.478	400	400	367	320	281	248	220	195	174	156	140	126	
5-1/2"	20	7'-5"	9'-6"	9'-10"	10.536	1.763	400	400	400	390	343	304	270	241	216	194	175	158	
54.4 psf	18	8'-4"	10'-5"	10'-9"	11.674	2.268	400	400	400	400	354	313	279	249	223	200	180	163	
38.1 in2	16	9'-8"	11'-10"	12'-3"	12.769	2.784	400	400	400	400	354	313	279	249	223	200	180	163	
	22	6'-2"	7'-11"	8'-2"	12.702	1.684	400	400	400	366	322	284	252	224	200	179	161	144	
6"	20	7'-2"	9'-1"	9'-5"	13.548	2.010	400	400	400	400	393	348	309	276	247	222	200	181	
60.4 psf	18	8'-0"	10'-0"	10'-4"	14.981	2.589	400	400	400	400	400	359	320	285	256	230	207	187	
42.7 in2	16	9'-3"	11'-4"	11'-9"	16.369	3.184	400	400	400	400	400	359	320	285	256	230	207	187	
	22	6'-0"	7'-7"	7'-11"	16.039	1.893	400	400	400	400	363	320	284	253	226	202	182	164	
6-1/2"	20	7'-0"	8'-9"	9'-1"	17.081	2.262	400	400	400	400	400	393	349	312	280	252	227	205	
66.5 psf	18	7'-10"	9'-8"	10'-0"	18.850	2.917	400	400	400	400	400	400	361	323	290	261	235	213	
47.4 in ²	16	9'-0"	10'-11"	11'-4"	20.575	3.594	400	400	.400	400	400	400	361	323	290	261	235	213	

