Project Schedule

<u>Task</u>	<u>Weeks</u>	Description	Exact Dates
	Week of December 04, 2005	Breadth topic research (EFIS)	•
	Week of December 11, 2005	Finals week	•
		Review of steel and steel connections	• Dec. 13-16
	Week of December 18, 2005	> Break	•
	Week of December 25, 2005	> Break	•
	Week of January 01, 2005	> Break	•
1	Week of January 08, 2005	Classes begin	 Jan. 9
		Review of steel	 Jan. 9-10
		Determine best framing direction based on ariteria from took 1	 Jan. 9-12
		on criteria from task 1	
		 Determine preliminary member sizes 	• Jan. 9-14
2	Week of Japuany 15, 2005	Adopt excel epresidebast for broad	• Jan. 9-14
2	Week of January 15, 2005	frame lateral loads	• Jan. 16-21
3	Week of January 22, 2005	Construct RAM model	• Jan. 23-28
	Week of January 29, 2005	Complete RAM model	• Jan. 30-
			Feb 2
	Week of February 05, 2005	Run computer analysis and process	 Feb. 6-11
		results	
	week of February 12, 2005	Update ram finite element building model using sizes established by calculations	• Feb 13-17
в		 Construct system sequencing diagram 	Eob 13-18
		for the braced frame system and	• 1 60 13-10
		compare with the light gage system	
4	Week of February 19, 2005	Spot check typical foundation sizes using	• Feb. 20-22
		Terzaaghi or Meyerhof bearing capacity	
		method	
В		Conduct cladding analysis to create weather registered for the EEIS evetore	• Feb. 22-25
5	Week of February 26, 2005	 Finish hand spot checks and finalize any 	• Ech 27-28
5	Week of rebruary 20, 2005	unresolved issues	• Feb. 27-20
	Week of March 05, 2005	Spring break	•
	Week of March 12, 2005	Update building plans to reflect typical	• March 13-18
		changes	
	Week of March 19, 2005	Begin typing final report	 March 20-25
	Week of March 26, 2005	Assemble and print reports	 March 27-31
	Week of April 02, 2005	Final report due	April 5
		Prepare presentation	April 6-8
	vveek of April 09, 2005	First round of presentations	• April 10-12
	Week of April 16, 2005	 Correct and update presentation 	• April 17-19
	Week of April 23, 2005	Second round / jury presentations	 April 28

Tasks and tools to be used in each solution

Braced Frame Alternative

Task 1. Establish Trial Member Sizes

- a. Determine beam sizes based on a 38' max span and 21" ceiling height requirements. Determine if the use of shear studs as outlined in chapter 5 of the LRFD Manual are required for span and loading requirements.
- b. Establish if 5¹/₂" thickness of concrete and composite deck meets strength and vibration requirements based on manufacturer's data. Check for adequacy of three hour fire requirements based on Underwriter Laboratories (UL) testing.
- c. Determine the most economical floor framing direction. There are 2 options for framing directions: 31' in the North-South direction or 38' in the East-West direction bearing on steel beams that cantilever across the corridor, see figure 6 below. The systems will be compared by costs found in RS Means.
- d. Verify that the exterior corridor cantilever is adequate for loading.

Corridor

Task 2. Determine Floor Loadings

- a. Find factored self weight based on member selections from Task 1.
- b. Establish superimposed dead loads based on building plans and use.
- c. Verify gravity loads established in Technical Report #2 with ASCE 7-98 chapters 3, 4, and 7.
- d. Verify lateral loads established in Technical Report #2 with ASCE 7-98 chapters 6 and 9.

- Task 3. Complete Computer Analysis
 - a. Input the steel braced frame members into a 3D RAM finite element analysis program.
 - b. Assign lateral and gravity loading to the model based on the loads calculated in task 2. Set the computer analysis to analyze full and partial live load conditions to establish live load patterns on the structure.
 - c. Verify adequacy of member sizes based on lateral loads occurring at cardinal directions and at 45 degree angles to the structure.
 - d. Compare results for member sizes, loading on the footing, and story drift with the results of the hand calculations.
- Task 4. Complete Hand Spot Checks

(To be used to verify specific members as needed)

- a. Using the Tributary Area Method for lateral loads, select the steel braced frame with the largest tributary area and calculate the seismic and wind story forces. Apply story forces to nodes and uniform gravity loads to horizontal beams.
- b. Adapting the Shear Wall Analysis excel spreadsheet created in Technical Report #3, calculate the axial and torsional loads on each braced frame in the system.
- c. Using the Truss Analysis, calculate axial and bending moments.
- d. Determine nodal loads using Portal Frame Analysis
- e. Select critical members within the truss and verify size using chapter 6 of the LRFD Manual based on interaction of the member's axial and bending loads.
- f. Determine story drift by the use of Virtual Work Method, as illustrated in the introduction to steel class at Penn State.
- g. Calculate new forces that are transferred to the foundation and size the foundation system based on the Terzaaghi or Meyerhof Bearing Capacity Methods.

Task 5. Final Analysis

- a. Design a cross brace-to-column connection capable of transferring the maximum calculated force. The connections chapter of the LRFD Manual and course notes from the Penn State master's connection course will be used to evaluate the connections. Calculate column to column splice connections for the frame in the same manner.
- b. Establish the final steel braced frame based on the RAM model.
- c. Verify that all calculated member and footing sizes in the final design of the structure correspond with the greatest loading of the structure.
- d. Prepare updated plans reflecting these changes to the structure.

Project Timeline

		_	_		_	_	_	_			_	We	ek	_	_	_	_	_	_	_	_
Week	Description	1 2	e	4	S	9	7	80	6	10	11	12	13 1	14 1	5	6 1	7 18	3 19	9 20	21	
	Breadth Topic Research (EFIS)		Ц													\square					
2	Finals Week																				Ĕ.,
	Review of Steel and Steel Connections																				_
ო	Christmas Break																				_
4	> Break																				_
S	> Break		Ц													\square					_
9	Classes Begin																				_
	Determine Best Framing Direction Based on Criteria from Task 1																				_
	Determine Preliminary member sizes																				_
	Calculate Gravity Loadings	_													_	_					_
7	Adapt Excel Spreadsheet for Braced Frame Lateral Loads																				_
•••	Construct RAM model																				_
თ	Construct RAM model																				_
9	Run Computer Analysis and Process Results																				_
1	Establish Structural Steel Sequencing Diagram		Ц																		_
12	> Spot Check Typical Foundation Sizes Using Terzaaghi or Meyerhof Bearing Capacity Metho	ds														-					_
	Conduct Cladding Analysis to Create Weather Resistance for the EFIS System														_	_					_
1 3	Finish Hand Spot Checks and Finalize any Unresolved Issues																				_
14	Spring Break																				_
15	Update Plans to Reflect Typical Changes																				_
9	Begin Typing Final Report	Η																			_
17	Assemble and Print Reports																				_
9	> Final Report due		Ц													\square					_
	Prepare Presentation														_	_					_
9	First Round of Presentations																				_
20	Correct and Update Presentation																				_
2	Second Round / Jury Presentations														_	_	_				
		-		-	-								-	-			-	-	-	-	•