Appendix D - Catwalk Calculations

Steel Catwalk Load Calculations:

Assumptions:

- Considering HSS $5 \times 5 \times 5 / 16$ hangers and W8x28 girders are the critical members
- The catwalk is 1 ' wide, with largest spans of 25 '
- Load requirements are 40 PSF LL and 20 PSF DL

> HSS $5 \times 5 \times 5 / 16$ hanger -
> Tributary Area $=25^{\prime} \times 1,=25 \mathrm{ft}^{2}$
> $1.2(20 \mathrm{PSF})+1.6(40 \mathrm{PSF})=88 \mathrm{PSF}$
> $25 \mathrm{ft}^{2} \times 88 \mathrm{PSF}=2,000 \mathrm{lb}$
> Stress $=\mathrm{P} / \mathrm{A}=2.2 \mathrm{kips} / 8.42 \mathrm{in}^{2}=0.27 \mathrm{ksi}<50 \mathrm{ksi}$

W8x28 girder -
$\mathrm{W}=88 \mathrm{PSF} \times 1^{\prime}=88 \mathrm{PLF}$
$\mathrm{V}_{\mathrm{u}}=(\mathrm{wl}) / 2=(88$ PLF x 25 ft$) / 2=1,100 \mathrm{lbs}$
$\mathrm{M}_{\mathrm{u}}=\left(\mathrm{wl}^{2}\right) / 8=\left[8 \operatorname{PLF} \mathrm{x}(25 \mathrm{ft})^{2}\right] / 8=6,875 \mathrm{ft}-\mathrm{lbs}$
*DL \& LL: $\Delta=\left(5 \mathrm{wl}^{4}\right) / 384 \mathrm{EI}$
$=\left[5 \times 88\right.$ PLF x $\left.(25 \mathrm{ft})^{4} \times 1728 \mathrm{in}^{3}\right] /\left(384 \times 29 \mathrm{e} 3 \mathrm{ksix} 98 \mathrm{in}^{4} \times 1,000 \mathrm{lbs}\right)=0.272 \mathrm{in}$ $0.272 \mathrm{in}<0.625=(25 \mathrm{ft} \mathrm{x} 12 \mathrm{in} / \mathrm{ft}) / 480$
*LL: $\Delta=\left(5 \mathrm{wl}^{4}\right) / 384 \mathrm{EI}$
$\left.=5 \times 64 \operatorname{PLF} \times(25 \mathrm{ft})^{4} \times 1728 \mathrm{in}^{3}\right] /\left(384 \times 29 \mathrm{e} 3 \mathrm{ksi} \times 98 \mathrm{in}^{4} \times 1,000 \mathrm{lbs}\right)=0.198 \mathrm{in}$ 0.198 in $<0.833=(25 \mathrm{ft} \mathrm{x} 12 \mathrm{in} / \mathrm{ft}) / 360$
$Z_{\text {required }}=\mathrm{M}_{\mathrm{u}} / \Phi_{\mathrm{b}} \mathrm{F}_{\mathrm{y}}=(6,875 \mathrm{ft}-\mathrm{lbs} \times 12 \mathrm{in}) /(0.9 \times 50 \mathrm{ksi} \times 1,000 \mathrm{lbs})=1.83 \mathrm{in}^{3}$

Sean C. Ehlers

Aluminum Catwalk Load Calculations:

Assumptions:

- Considering HSS $4 \times 4 \times 3 / 16$ hangers and W10x210 girders are the critical members
- The catwalk is 1 ' wide, with largest spans of 25 '
- Load requirements are 40 PSF LL and 20 PSF DL
- $\mathrm{F}_{\mathrm{y}}=35 \mathrm{ksi}$ and $\mathrm{E}=10 \mathrm{e} 3 \mathrm{ksi}$ for alloy 6061-T6
- Additional material characteristics are to be that of steel, allowing for the same equations

HSS $4 \times 4 \times 3 / 16$ hanger -
Stress $=\mathrm{P} / \mathrm{A}=2.2 \mathrm{kips} / 2.87 \mathrm{in} 2=0.77 \mathrm{ksi}<35 \mathrm{ksi}$

W8x28 girder -
$\mathrm{W}=88 \mathrm{PSF} \times 1^{\prime}=88 \mathrm{PLF}$
$\mathrm{V}_{\mathrm{u}}=(\mathrm{wl}) / 2=(88$ PLF x 25 ft$) / 2=1,100 \mathrm{lbs}$
$\mathrm{M}_{\mathrm{u}}=\left(\mathrm{wl}^{2}\right) / 8=\left[8 \operatorname{PLF} \mathrm{x}(25 \mathrm{ft})^{2}\right] / 8=6,875 \mathrm{ft}-\mathrm{lbs}$
*DL \& LL: $\Delta=\left(5 \mathrm{wl}^{4}\right) / 384 \mathrm{EI}$

$$
\begin{aligned}
= & {\left[5 \times 88 \operatorname{PLF} \times(25 \mathrm{ft})^{4} \times 1728 \mathrm{in}^{3}\right] /\left(384 \times 10 \mathrm{e} 3 \mathrm{ksi} \times 155.8 \mathrm{in}^{4} \times 1,000 \mathrm{lbs}\right)=0.496 \mathrm{in} } \\
& 0.496 \mathrm{in}<0.625=(25 \mathrm{ft} \mathrm{x} 12 \mathrm{in} / \mathrm{ft}) / 480
\end{aligned}
$$

*LL: $\Delta=\left(5 \mathrm{wl}^{4}\right) / 384 \mathrm{EI}$

$$
\begin{aligned}
& =\left[5 \times 64 \operatorname{PLF} \times(25 \mathrm{ft})^{4} \times 1728 \mathrm{in}^{3}\right] /\left(384 \times 10 \mathrm{e} 3 \mathrm{ksi} \times 155.8 \mathrm{in}^{4} \times 1,000 \mathrm{lbs}\right)=0.198 \mathrm{in} \\
& 0.37 \mathrm{in}<0.833=(25 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft}) / 360
\end{aligned}
$$

FRP Catwalk Load Calculations:

No calculations were evaluated for this section. E.T. Techtonics estimator considered the 40 PSF live load and 20 PSF deal load.

Wood Catwalk Load Calculations:

No calculations were evaluated for this section. The steel hangers remained in this design and have already been checked. Manufactured I-beams were recommended by a Georgia-Pacific Product Guide.

