Executive Tower
Sean Howard
Structural
Technical Assignment 1
Structural Concepts/ Existing Conditions

Executive Summary

This document is an analysis of the current conditions and structural concepts used in the designing of the structural system for the Executive Tower. In this report, a thorough description of the Dead Loads calculated and Live Loads used from the District of Columbia Building Code Supplement 2003 and ASCE7-02 and their uses in determining reactions due wind and seismic forces.

The Initial design of the Executive Tower was to utilize the most available space by using a flat plate concrete system minimizing the floor to ceiling thicknesses. The typical slab is 8 " cast in place concrete with additional $10^{\prime} \times 8^{\prime} \times 8$ " drop panels at column locations. Through the use of this system the designers were able to construct a 12 story Class A office building with 9 foot ceilings under the buildings restricted height of 160 feet.

Spot checks of the analysis have been performed and can be found in Appendix A, B, C, D of the following systems, respectively: Slab thickness and reinforcement, exterior beam including weight from curtain wall, exterior column including worse case scenario from wind and seismic forces, and a minimal shear wall analysis.

Overview

The Executive Tower quietly rests in it elegance at the intersection of New York and $14^{\text {th }} \mathrm{St}$. The Executive Tower is a class A office structure in the downtown area of N.W. Washington DC located only two blocks from the White House. This 12 story building houses such firms as Bloomberg Financial, Merrill Lynch, and AIG satisfying their needs by supplying permanent office and open plan floors. The Executive Tower was completed in December of 2000. Since then, it has remained one of the highest rental rates per square foot of office space in all of Washington DC. The Executive Tower's prestige is most noted from atop its roof that

Figure 1.1 - Viewing terrace of Executive Tower with Washington Monument in Background
overlooks the City of Washington DC as seen in figure 1.1.

Architecture

The Executive Tower was designed by the international group Hellmuth, Obata + Kassabaum, Inc. (HOK). The Main architectural challenge was designing a building that would fit in a non rectangular lot. The designers skewed the south wall to be aligned with New York Ave and use the south section of the west wall to create the building's trademarked curved
 façade. To keep this portion of the façade separate from the rest of the building, the designer extended the roof an extra floor, which created the viewing terrace, and keeping this section bear of the granite façade found on the first two floors. Capitols are used at the top of the building to generate a sense of closure to the building's slender feel. Again to keep the curved façade separate the capitol is discontinued across this section at the $10^{\text {th }}$ floor and $11^{\text {th }}$ floor ceiling and a large capitol is constructed to complete the structure at the roof of the view area along the curved façade.

Structural Systems

Floor system

The floor system of the Executive Towers is a two-way flat plate concrete slab, a typical systems used in and around the DC area to allow a maximum number of floors to be constructed in a region with specific height restrictions. The typical thickness for this slab is 8 " reinforced with \#4 at 12" O.C. The slab around the exterior of the building has an additional $31 / 2^{\prime \prime}$ thickness acting as wide exterior beams. Drop Panels at interior and exterior column locations of 10 'x8'x8" allow of for the thinner slabs across the longer span.

Column

The columns of the Executive Tower consist of all cast in place concrete, mostly rectangular spread out variably throughout the floor system as seen in figure 2.1. The flat plate concrete slab allows the column location to be irregular and having a typical bay is virtually non-existent in the Executive Tower. However, they typical column consists of 20 "x20" with roughly 6 \#10 bars of reinforcement.

Foundation

A MAT Foundation is utilized to maximize ground contact and distribution of the buildings loads. An additional 13'x13'x1' spread footings at column locations. The MAT is a 42 " thick slab fully reinforced with \#10@12" O.C. each way bottom steel and \#7@12" O.C. each way top steel. Sheeting and shoring is placed on the north, south and west side of building and underpinning is required only on the east side.

Lateral Resistance

The lateral resisting system consists of six shear walls forming the enclosure of the elevator shafts in the center of the building. The shear walls are all 12" thick extending the height of the building and is reinforced with \#6@8" horizontal steel through the height of the building.

Codes

District of Columbia Building Code Supplement 2003

Standards

IBC 2003
ASCE7-02

Loadings

Live Loads

- Office + partitions
- Lobby
- Mechanical
- terrace (Viewing Area)
- Roof
- Corridor
- Corridor above $1^{\text {st }}$ floor
- Parking
- Stairs
$80+20=100 \mathrm{psf}$
100 psf
150 psf
100 psf
30 psf
100 psf
80 psf
40 psf
100 psf

Dead Loads

Parking	
8" reinforced Concrete slab	100 psf
Sprinklers	
MEP ducts	5 psf
	5 psf
	110 psf
Floors 1 ${ }^{\text {st }}$ - Roof	
8" reinforced Concrete slab	100 psf
Sprinklers	
MEP ducts	5 psf
Finishes	5 psf
	10 psf

Curtain Wall

$1^{\text {st }}$ floor, tributary area $=11$ ' $-0^{\prime \prime}$
6" Granite (trib = 50")
(98 pcf)*(6"x50") = 200 pLf
½" Glass
(160 pcf)*(.5"x132") = 73.3 pLf
~275 pLf
$2^{\text {nd }}$ Floor, tributary area $=9^{\prime}-0^{\prime \prime}$
6" Granite Panels (trib = 50")
$1 / 2^{\prime \prime}$ Glass
$(98 \mathrm{pcf})^{*}\left(6^{\prime \prime} \times 50 "\right)=200 \mathrm{pLf}$
(160 pcf)*(.5"x108") $=60 \mathrm{pLf}$
~260 pLf
$3^{\text {rd }}$ Floor - Penthouse, tributary area $=9^{\prime}-0^{\prime \prime}$
6" Precast Panel (trib = 50")
(150 pcf)*(6"x45") = 280 pLf
$1 / 2$ " Glass (160 pcf)*(.5"x108") $=60$ pLf

340 pLf

Snow Loads

Expose "B"		$\mathrm{p}_{\mathrm{g}}=25 \mathrm{psf}$
$\mathrm{C}_{\mathrm{e}}=1.0$	table $7-2$	
$\mathrm{C}_{\mathrm{t}}=1.0$	table $7-3$	
$\mathrm{I}=1.0$	table $7-4$	
$\mathrm{P}_{\mathrm{f}}=.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{Lp}_{\mathrm{g}}$		
$\mathrm{S}_{\mathrm{L}}=\mathrm{P}_{\mathrm{f}}=17.5 \mathrm{psf}$		

Seismic

$$
\begin{aligned}
& \text { Location - DC } \\
& \mathrm{S}_{\mathrm{s}}=18.0 \% \mathrm{~g} \quad \text { Fig 9.4.1.1a } \\
& \mathrm{S}_{1}=6.2 \% \mathrm{~g} \quad \text { Fig 9.4.1.1b } \\
& \mathrm{S}_{\mathrm{ms}}=\mathrm{FaSs} \\
& \mathrm{~S}_{\mathrm{m} 1}=\mathrm{FvS} 1 \\
& \mathrm{~S}_{\mathrm{ms}}=(1.6)(.18)=.288 \\
& \mathrm{~S}_{\mathrm{m} 1}=(2.4)(.062)=.1488 \\
& \mathrm{~S}_{\mathrm{Ds}}=2 / 3 \mathrm{~S}_{\mathrm{ms}}=.192 \\
& S_{D 1}=2 / 3 S_{m 1}=.099 \\
& \mathrm{~V}=\mathrm{C}_{\mathrm{s}} \mathrm{~W} \\
& \begin{array}{rlrl}
\mathrm{C}_{\mathrm{s}}(\mathrm{~min}) & =.0441 \mathrm{I}_{\mathrm{Ds}}=.0084 & \mathrm{R}=5 \\
& =\mathrm{SDS} /(\mathrm{R} / \mathrm{I})=.0384 & & \mathrm{I}=1.0 \\
(\mathrm{max}) & =\mathrm{SD} 1 /(\mathrm{T}(\mathrm{R} / \mathrm{I}))=.0227 & \leftarrow \text { controls } & \mathrm{T}=\mathrm{C}_{\mathrm{T}} \mathrm{~h}_{\mathrm{nx}} \\
& & \mathrm{~T}=.871
\end{array} \\
& \text { Category II Site Class D } \\
& \text { seismic group I } \\
& \text { Importance factor }=1.0 \\
& \mathrm{~F}_{\mathrm{a}}=1.6 \\
& \mathrm{~F}_{\mathrm{v}}=2.4 \\
& \text { Seismic Design Category - D }
\end{aligned}
$$

See spread sheet 4.1 for seismic loadings, base shear and over turning moment

Wind Loads

Exposure B case 2
$\mathrm{K}_{\mathrm{zt}}=1.0$ (no hill)
$\mathrm{K}_{\mathrm{d}}=.85$
$\mathrm{V}=90 \mathrm{mph}$
$\mathrm{I}=1.0$
$\begin{array}{ll}\text { Windward } & p_{w}=q_{z} G C_{p} \\ \text { Leeward } & p_{L}=q_{n} G C_{p}\end{array}$
$\begin{array}{ll}\text { Windward } & p_{w}=q_{z} G C_{p} \\ \text { Leeward } & p_{L}=q_{h} G C_{p}\end{array}$

$$
\mathrm{q}_{\mathrm{z}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{~K}_{\mathrm{zt}} \mathrm{~K}_{\mathrm{d}} \mathrm{~V}^{2} \mathrm{I}
$$

for windward $\mathrm{C}_{\mathrm{p}}=.8$
for leeward NS Cp = -. 5 EW Cp = -.3

NS G Calculation

$$
\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}} \mathrm{~h}^{\mathrm{x}} \quad(9 \cdot 5 \cdot 5 \cdot 3 \cdot 2-1)
$$

C_{t}	0.02
	153.33
x	0.75
$\mathrm{~T}_{\mathrm{a}}$	0.871465798
f	1.147491963

flexible buildings ($\mathrm{f}<1.0 \mathrm{~Hz}$) (6.5.8): G_{f} Table 6-2 use

$Z_{\text {min }}$	30
c	0.30
$\boldsymbol{\ell}$	320
ε	0.33
b	0.45
α	0.142857143

$$
\mathrm{V}_{\mathrm{z}}=b(\mathrm{z} / 33)^{\alpha} \mathrm{V}(88 / 60)=68.7694659
$$

F 6-1

	90
	90

$\mathrm{n}_{1}=\mathrm{f}=1.14749196$
$\eta_{\mathrm{h}}=4.6 \mathrm{n}_{1} \mathrm{~h} / \mathrm{V}_{\mathrm{z}}=11.7689839$
$\eta_{\mathrm{B}}=4.6 \mathrm{n}_{1} \mathrm{~B} / \mathrm{V}_{\mathrm{z}}=7.06154385$
$\eta_{\mathrm{L}}=15.4 \mathrm{n}_{1} \mathrm{~L} / \mathrm{V}_{\mathrm{z}}=28.7801295$
$\mathrm{R}_{\mathrm{i}}=\left(1 / \eta_{\mathrm{i}}\right)-\left(1 /\left(2 \eta^{2}\right)\right)\left(1-\mathrm{e}^{-2 \eta}\right)$

R_{h}	0.08135923
R_{B}	0.13158511
R_{L}	0.03414255

EW G Calculation

flexible buildings ($\mathrm{f}<1.0 \mathrm{~Hz}$) (6.5.8): G_{f} Table 6-2

$\mathrm{Z}_{\text {min }}$	30	
c	0.3	
ℓ	320	
ε	0.3333	
b	0.45	
α	0.142857143	
L	92	
B	112	
g_{Q}	3.4	
g_{v}	3.4	
$z=0.6 \mathrm{~h}=$	91.998	$z>30$?
$L_{z}=\ell(z / 33)^{\varepsilon}=$	450.3566897	TRUE
$\mathrm{I}_{\mathrm{z}}=\mathrm{c}(33 / \mathrm{z})^{1 / 6}=$	0.252877689	use 91.998
$\mathrm{Q}=(1 /(1+0.63$ (+h)/Lz $\left.\left.)^{0.63}\right)\right)^{1 / 2}$	0.83004713

V	90
β	0.05
$\mathrm{V}_{\mathrm{z}}=b(\mathrm{z} / 33)^{\alpha} \mathrm{V}(88 / 60)=$	68.7694659
$\mathrm{n}_{1}=\mathrm{f}=$	1.14749196
$\eta_{\mathrm{h}}=4.6 \mathrm{n}_{1} \mathrm{~h} / \mathrm{V}_{\mathrm{z}}=$	11.7689839
$\eta_{\mathrm{B}}=4.6 \mathrm{n}_{1} \mathrm{~B} / \mathrm{V}_{\mathrm{z}}=$	8.59666207
$\eta_{\mathrm{L}}=15.4 \mathrm{n}_{1} \mathrm{~L} / \mathrm{V}_{\mathrm{z}}=$	23.6408207
$\mathrm{R}_{\mathrm{i}}=\left(1 / \eta_{\mathrm{i}}\right)-\left(1 /\left(2 \eta^{2}\right)\right)$	$\left(1-e^{-2 \eta}\right)$
R_{h}	0.08135923
R_{B}	0.10955856
R_{L}	0.04140508

$$
\mathrm{N}_{1}=\mathrm{n}_{1} \mathrm{~L}_{\mathrm{z}} / \mathrm{V}_{\mathrm{z}}=7.51468221
$$

$$
\begin{array}{r}
\mathrm{R}_{\mathrm{n}}=7.47 \mathrm{~N}_{1} /\left(1+10.3 \mathrm{~N}_{1}\right)^{5 / 3}=0.03908647 \\
\mathrm{R}=
\end{array}
$$

$$
\left((1 / \beta) R_{\mathrm{n}} \mathrm{R}_{\mathrm{h}} \mathrm{R}_{\mathrm{B}}\left(0.53+0.47 \mathrm{R}_{\mathrm{L}}\right)^{1 / 2}=0.06187611\right.
$$

$$
g_{R}=\left(2 \ln \left(3600 n_{1}\right)\right)^{1 / 2}+0.577 /\left(2 \ln \left(3600 n_{1}\right)\right)^{1 / 2}=4.222147352
$$

$$
\mathrm{G}_{\mathrm{f}}=0.925\left(\left(\left(1+1.7 \mathrm{I}_{\mathrm{z}}\left(\mathrm{~g}_{\mathrm{Q}}^{2} \mathrm{Q}^{2}+\mathrm{g}_{\mathrm{R}}^{2}{ }_{\mathrm{R}}^{2}\right)^{1 / 2}\right) /\left(1+1.7 \mathrm{~g}_{\mathrm{V}} \mathrm{I}_{\mathrm{z}}\right)\right)=0.833605419\right.
$$

Story Pressures

$\mathrm{k}_{\mathrm{z}} \mathrm{ht}$ (ft)			N/S		E/W	
	k_{z}	q_{z}	$\begin{gathered} \mathrm{P}_{\mathrm{w}}+\mathrm{P}_{\mathrm{L}} \\ (\mathrm{psf}) \end{gathered}$	$\begin{aligned} & W_{w} \\ & (\mathrm{psf}) \end{aligned}$	$\mathrm{P}_{\mathrm{w}}+\mathrm{P}_{\mathrm{L}}(\mathrm{psf})$	$\begin{aligned} & W_{w} \\ & (\mathrm{psf}) \end{aligned}$
160	1.13	19.917	18.35	1687.9	21.58	2417.4
140	1.09	19.212	17.87	1644.4	21.11	2364.7
120	1.04	18.331	17.28	1590.1	20.53	2298.9
100	0.99	17.449	16.69	1535.8	19.94	2233.1
90	0.96	16.921	16.34	1503.2	19.59	2193.6
80	0.93	16.392	15.98	1470.6	19.23	2154.1
70	0.89	15.687	15.51	1427.2	18.76	2101.4
60	0.85	14.982	15.04	1383.7	18.29	2048.8
50	0.81	14.277	14.57	1340.2	17.82	1996.1
40	0.76	13.395	13.98	1285.9	17.23	1930.3
30	0.70	12.338	13.27	1220.8	16.53	1851.3
25	0.66	11.633	12.80	1177.3	16.06	1798.6
20	0.62	10.928	12.32	1133.8	15.59	1746.0
0-15	0.57	10.047	11.73	1079.5	15.00	1680.1

spot check column
Appendix C
6^{+h} floor supports 6 floors total

$$
\text { trip Area }=500 \mathrm{ft}^{2}
$$

Live load reduction $k_{u}=4$

$$
\begin{aligned}
& D l=145 p s f \\
& L L=100 \mathrm{psf}
\end{aligned}
$$

$$
A_{T}=\left(500 \mathrm{ft}^{2}\right)(6 \mathrm{floor})
$$

$$
\begin{aligned}
& L=L_{0}\left(.25+\frac{15}{\sqrt{k_{H} A_{T}}}\right)>.4 L_{0} \quad A_{T}=3000 \mathrm{ft}^{2} \\
& L=100\left(.25+\frac{15}{\sqrt{4(3500)}}\right) \\
& L=37.7 \mathrm{pst}>.4\left(L_{0}\right)=40 \mathrm{ps} L<\text { controls }
\end{aligned}
$$

$W_{n}=1.2(145 p s f)+1.6(40 p s f)=238 p s f$

a）Axial strength，P_{0}
b）Balanced strain strength，P_{h}, M_{D}
c）Pure bending，Mo
l）$C=h$
e）$\Sigma_{t}=.005$

