FDA CDRH Laboratory

Silver, Spring Maryland

Executive Summary:

For this technical report I looked at 5 alternatives to the current structural system of the typical bays and then compared the pros and cons of each of the alternative systems to the original system. The current system is a concrete one-way system which spans in the east-west direction for each of the 3 bays that make up this cross-section of the building. The 5 alternatives that I reviewed were: composite steel girders, beams and decking; non-composite steel girders, beams, and concrete slab; steel girders, joists, and concrete slab; two-way concrete slab with drop panels, and a one-way concrete system. Through my analysis I found that all of these alternatives could be viable solutions for my building's structural system. Each alternative resulted in a lighter system, that normally had a smaller structural floor depth than the current system as well. This system allowed for no additional weight on the foundation system, and due to the upward stability of the ground the foundation, could actually be made smaller. I found that a main concern that developed due to the lighter systems was an increased susceptibility to vibration. However, when looking at the girder design of the one-way slab systems, it was noticed that this susceptibility may not be as great as originally thought. Due to a very low deflection, which in turn results in a high stiffness, the vibrations are decreased. This assumption may not be the case for all the structural systems, especially the steel framed systems. This assumption does, however, give an even more persuasive option with the alternatives looked at compared to the current system, due to very little drawbacks and possible money savings because of less time or material spent. The time savings is from the quick erection process of steel as compared to that of concrete for the steel structures, and the decrease in the amount of material (based on weight) of the concrete structures.

After comparing all of the alternatives to the current system, I found that although all the systems made for viable alternatives, at this time, the concrete alternatives were better suited for this structure. This is mainly due to the high amount of labor available for concrete work in the DC area as compared to the less common steel contractor. Also, no additional fireproofing is needed as compared to the spay on fireproofing that is needed for the steel components. Additional lateral support is also not needed in these concrete systems, due to the stout profile as the CDRH laboratory, the monolithic construction causing all joints to be fixed is all the lateral support that is needed, as compared to the necessity to have bracing or moment connections in the steel frames. Of the concrete systems, one system seemed to stand out. The one-way system, which had its supporting members turned perpendicular to the current system (spanning the shorter direction) in the controlling bay seemed to be the best alternative of them all. This system allowed for a great reduction in weight as well as depth, as compared to the current system, however, due to the low deflection, should have good stability against vibration. The only downfall of this system. This can be resolved by making the other bays span the long direction, which would result in a larger system, however, also allow for continuity of the building. Another resolution would be to leave the system with two different span directions, which may cause for a lack of continuity of the structural system, but a more economic building overall.

FDA CDRH Laboratory Silver, Spring Maryland

The FDA CDRH Laboratory is currently being built on the FDA consolidation campus in Silver Spring, Maryland. It is made up of a main four story laboratory topped with a 5th floor penthouse suite. There is also a one story high-bay laboratory space found on the west side of the main laboratory and office space. The building, with only the exception of the penthouse and high-bay laboratory, is made of cast-in-place concrete.

Loading:

Loading for the bays to be studied in this report will be found using the typical laboratory sections of the building.

Dead load values derived fro	m ASCE 7-02, Section 3						
Concrete: 150pcf							
Superimposed: 25p	sf (assumed)						
Ceiling:	Acoustical Fiber board	1psf					
Floor:	Floor: VCT						
Mechanica	al/Electrical:	10psf					
Partitions:		13psf					
Total:		25psf					

All live load values come from ASCE 7-20, Section 4 Light Manufacturing (Most Laboratory Spaces): 125psf Light Storage (Supplementary Laboratory Spaces): 125psf

Live loads are reducible (See Appendices D and E)

The Current System:

The typical floor system throughout the building is made of 4.5" thick one way slabs, spanning in the north to south direction. There are two typical joist layouts, both of which are pan-joist systems due to the monolithic pour of the slab and joist. The first typical plan is made of 10" wide by 16" deep joists, spaced 5'-3" on center. These joists span either 18' or 15'-5" and are designed with the same requirements as beams due to their large size and spacing. They are reinforced with #3 top reinforcement, #6 bottom reinforcement. The shear forces are resisted with #3 rebar. The second typical bay is also a pan-joist system with the joist dimension of 16"X16". They are spaced 3' on center and span a distance of 30'-9". They too must be designed like a beam due to their large size and spacing. The top and shear reinforcement is #3 rebar, with the bottom #8 reinforcement. These bays feed into a system of beams also poured monolithically.

The typical beam is 19.7" wide by 20.5" deep and spans 21'. The reinforcement at the midspan is comprised of 3 - #9 rebar with endspan reinforcement of 6 - #9 rebar. The shear forces are resisted with #3 rebar at 6" and then R rebar at 9". All concrete used in the pan-joist system, as well as the beams have a strength of 4000psi. The beams then feed into the typical 24"X18" columns, which are made of 5000psi concrete and 6-#8 rebar. This is a fixed connection causing for resistance against moments, which make up the entire lateral resistive system. The total weight of the current system is quite large, at 163.83K per controlling (30'-9" span) bay, with a total depth of 20.5".

FDA CDRH Laboratory

Silver, Spring Maryland

The following image is a representation of a building section of the 3 repeated panels found in the CDRH laboratory. For all calculations found in the appendix, the entire 3 panel system was looked at to account for load carryover. However, for the purpose of this report only the controlling span will be discussed in depth. This span in most circumstances will be the 30'-9" span.

In the greater Washington D.C. metro area one will find a great deal of concrete construction. This is due to the height restriction found in the District itself, and the ability to increase the number of floors because of thinner structural sandwich than typical steel construction. Although, the Silver Spring area is not under this same height restriction, the location does play a part in the local skilled labor and customary design in the area, utilizing the high demand of concrete. The high density of concrete is also very advantageous to control vibration, which is a major concern in a laboratory situation. There is also no need for fireproofing. However, the very large joist system used does cause for large loads on the supporting members and foundation.

For Additional information and supporting calculations see appendix F

FDA CDRH Laboratory Silver, Spring Maryland

Alternative Systems:

I chose to look at two types of building materials for the alternative systems: concrete and steel. The concrete was used as an exact material comparison in different layouts and spacing. Steel was compared based on a change in constructability, weight, and structural system depth.

Alternative System 1: Composite Steel Beams with Composite Decking

A steel composite system with composite decking was the first system that I analyzed. For the decking I used the 2001 United Steel Decking manual to find that for the loading condition I have chosen, I would need a 4.5" slab over a 2" lok-floor decking system made of 22 gage steel. To allow for composite action between the steel decking and the concrete slab, I will use 3/4" studs. There is no need for welded wire fabric in this system do to the extremely large loading capability. I then entered the required weights and design criteria into RAM Structural System, 2003. RAM calculated the needed steel beam sizes, as well as the number of shear studs needed. The end result is shown below:

The final result of using this system is an overall floor depth of 25.1" at a weight of only 30.234K. This system is lighter in weight than the concrete system that is currently in place, due to the use of steel members and a thin slab. Because of this, there is no concern of not having an adequate foundation to support the new structure. However, there is a concern about the susceptibility to vibration, which is an important consideration for a structure with such valuable and precise instruments in the laboratory spaces. This system, although having a similar total cost to the steel system, will need additional preconstruction planning to allow for delivery of appropriate materials as well as

FDA CDRH Laboratory

additional staging areas, however, it will not require the expensive formwork or lengthy curing time needed for concrete. There will also be a need for additional lateral bracing or moment connections to support the lateral loads that are currently being resisted by the monolithic concrete construction. This system does cause for a local dilemma due to the extraordinary amount of concrete work found in the area. Steel construction as well as steel contractors and construction companies are not nearly as prevalent as concrete contractors and construction. In addition, this structure will need to have spay-on fireproofing, while the current system does not need any additional fireproofing due to its thick slabs and concrete construction. Although this systems does have some drawbacks, the loss of space and weight are very important. Therefore, it is an okay alternative and can be further explored in the future to find how extensive the drawbacks such as vibration truly are.

For Additional information and supporting calculations see appendix A

Alternative System 2: Non-Composite Steel Beams with Form Deck

A steel non-composite system with form deck was the second system that I analyzed. For the decking I used the 2001 United Steel Decking manual to find that for the loading condition that I have chosen, I would need a 5" slab over a UF2X form deck made of 22 gage steel. This system will use 44-W2.9XW2.9 welded wire fabric. I then entered the required weights and design criteria into RAM Structural System, 2003. The systems was able to calculate the needed steel beam sizes needed. This is the end result:

The non-composite design produced larger members with a total structural sandwich depth of 28.7" and a total weight of 35.565K per 30'-9" bay. This result is due to the lack of "shared" strength between composite members.

FDA CDRH Laboratory

Other than the slightly larger size and weight then the first alternative system, most of the similarities and differences between the current and alternative 2 are the same as those in alternative 1. The only advantage this system may have over the composite system, is that the additional mass may help to reduce vibration, however, due to the noncomposite construction, this may not be a significant benefit. Again, this system is an okay alternative, having both drawbacks and advantages, and can continue to be analyzed in the future to see if the benefits truly outweigh those found in the current system.

For Additional information and supporting calculations see appendix B

Alternative System 3: Steel Joist System

A steel joist spaced at 2' on center was the third system that I analyzed. For the decking I used the 2001 United Steel Decking manual to find that for the loading condition that I have chosen, I would need a 2.5" slab over a UFS form deck made of 28 gage steel. This system will use 66-W1.4XW1.4 welded wire fabric. I also used the New Columbia Joist Company Steel Joist and Joist Girder manual, 2002 to find that a 16K3 joist would be adequate to support the loading conditions. I then entered the required weights and design criteria into RAM Structural System, 2003. The systems was able to calculate the needed steel beam as well as confirming they joist type chosen. This is the end result:

FDA CDRH Laboratory

Silver, Spring Maryland

The joist design produced an intermediate design depth of 26.2", however, due to the use of many smaller members with a much smaller floor slab, the total weight went down a great deal, totaling only 21.7959K per controlling bay. The additional members cause for a large addition to construction time because of the increased number of connections, as compared to alternatives 1 and 2. Also, because of the much lighter weight, vibration becomes a greatly increased concern. There is also a need for a greater amount of fireproofing on the deck due to the less then 3" slab. Other than the greatly reduced weight and large number of small members, most of the similarities and differences between the current and alternative 3 are the same as those in alternatives 1 and 2. Although there is no great advantage, due to the problems that are associated with the greatly reduced weight, this system can still be considered an okay alternative, due to the fact that the drawbacks can be further analyzed to find how great of a concern they truly are.

For Additional information and supporting calculations see appendix C

Alternative System 4: Two-Way Slab System

The fourth system that I looked at used the same material as the original system, concrete. Instead of the current one-way joist system, I used a two-way system with drop panels around the columns. To find the required sizes and reinforcement, I used the 2002 CRSI Design Manual. I assumed the concrete to have a strength of 4ksi with 60ksi steel reinforcement. I found that the controlling span of 30'-9", would need square drop panels with a 10.33' width and a 9" depth. The columns to support this slab would need to be 24" square. The column strip would need 17#5 top external reinforcement, 18#8 bottom reinforcement, and 14#8 top internal reinforcement. The middle strips would need bottom reinforcement of 12#8 and top internal reinforcement of 13#7. The following are diagrams of the size of the drop panels as well as the size and placement of the required reinforcement for both the column and middle strip.

FDA CDRH Laboratory

Silver, Spring Maryland

With a total depth of 19.5" and a total weight of 96.75K per controlling bay, this systems give a large reduction to the weight while keeping a similar structural sandwich depth. Due to the lighter weight, the impact on the foundation of this system was not a concern. Cost was not a concern either, due to the similar construction method found in the current system. This system may have a slight advantage over the current system, in the fact that there is a less complicated formwork required for each bay. As with the current system, no additional fireproofing is needed, and the erection time will be about the same, with a slight possibility of time savings with the actual laying out of the formwork. There is also possible financial savings due to the reduced amount of concrete used. The monolithic construction does not require a changed lateral support system because of the fixed ends on all members. Also, by using the local "norm" of concrete, there is a large skilled workforce to choose from. The only possible disadvantage to this system is that because of the lighter weight and lack of central bay spanning members, there could be an increase in vibration susceptibility. Due to few disadvantages, this system is a viable alternative. Further study of the vibrations will reveal if this system is truly provides a great advantage over the current system.

For Additional information and supporting calculations see appendix D

Alternative System 5a: One-Way Slab System in the 30'-9" Direction

The fifth system I analyzed was a redesign of the current system. I changed the sizes and spacing of the current system by using the 2002 CRSI Design Manual. I assumed the concrete to have a strength of 4ksi with 60ksi steel reinforcement. By looking up the current loading conditions in the CRSI, I was able to find that a system made up of 30"

forms with 7" wide ribs and a 16" depth. A 4.5" slab is needed, which would bring the total depth to 20.5". The reinforcement would include, #5 bars spaced 8" apart on the top and 2#7 bars in the bottom of each rib. There would also be 4X12-W3.5XW2 welded wire mesh to guard against temperature and shrinkage. After the necessary slab and joist system was found, a girder needed to be designed to carry the load to the columns. I found that a girder that had the same depth equal to the total depth of 20.5" would need to have a width of 48.5". The girders would also require 6#14 reinforcing bars. These girders were also checked for deflection and were found to have practically no deflection under the required loading. Below are two diagrams of the proposed system. One is a floor plan that shows the layout of the beam spanning the 30'-9" direction with the large girders surrounding the main area, while the other diagram is a representation of the placement of the rebar in the joists and slab.

FDA CDRH Laboratory

Silver, Spring Maryland

Having a total depth of 20.5" and a total weight of 116.72K, I found that the one-way span using new spacing would have the same depth as the current system, however, there is a weight reduction of almost 50K. This does not cause impact on the foundation and only reduces cost because of the reduced amount of concrete needed. However, as with all the other alternatives, the reduced weight may cause and increase in vibration susceptibility. Despite this fact, because of the very low decrease in weight, this will not be as great of an increase in susceptibility, and because of the extremely low deflection under normal loading, one can assume that there will be very little susceptibility to vibration. Because of the extreme similarity to construction as the current system, there are also many similarities in to the current system, from the time it takes to erect, the work force number and availability, the lateral loading resistance from the fixed monolithic connections, and the fact that there is no need for fireproofing. Due to the cost savings from using less concrete, while still having low increase in susceptibility to vibration, this system seems to be a very good alternative, and can be looked at in more detail to see if the assumptions about the vibration are correct.

For Additional information and supporting calculations see appendix E

Alternative System 5b: One-Way Slab System in the 21' Direction

The last alternative that I reviewed was the same one-way system that was used in the previous alternative, however, in this alternative, instead of just changing the spacing of the current system, I also changed the spanning direction. Because the non-controlling bays had their smaller span in the east-west direction, the controlling span also had an

east-west spanning direction, which, although caused for an increased spanning condition, also gave continuity to the total building span direction. I, however, wanted to see what savings and advantages could come from spanning this bay in the non-controlling span (the 21' direction). I found using the CRSI, 2002, that if you use a one-way span in the 21' direction, using the predetermined loading, you will require, 20" forms with 5" rid width and 8' rib depth. There would also be a slab depth of 3" making a total depth of 11". The reinforcement requirements are #5 bars at 10" for the top in the slab and 2#5 bars in the bottom of each rib. 4X12-W2.1XW1.4 welded wire fabric is also used for reinforcement the slab. I then designed the girder system for this bay, using the depth of the ribs and slab my girders are 11" deep by 92.2" wide. The entire structural system per bay weighs 91.64K. The girders are reinforced with 6#9 reinforcing bars. Below are diagrams of the plan of the slab system with its very wide girders as well as an elevation showing the joist sizes and the placement of the rebar.

FDA CDRH Laboratory

Silver, Spring Maryland

Having a total depth of only 11" and a total weight of 91.645K, I found that the one-way span using the new spacing and direction on the critical bay allows for an extreme reduction in both weight and depth of the structural system. The huge reduction in concrete also allows for financial savings. This, as with all the other systems, does not cause impact on the foundation. As with the one-way alternative, spanning the 30'.9" direction, the girders were found to work extremely well in deflection and, although this system is much lighter then the current system, it should not have much increase in vibration susceptibility. Just as with the other one-way alternative, because of the extreme similarity to the current construction, there are also many similarities in to the current system, from the time it takes to erect, the work force number and availability, the lateral loading resistance from the fixed monolithic connections, and the fact that there is no need for fireproofing. Due to the cost savings from using less concrete as well as the decrease in slab depth, while still having low increase in susceptibility to vibration, this system seems to be the best alternative, however, further analysis will have to be done to give solidity to this conclusion..

For Additional information and supporting calculations see appendix E

The next two pages have a summary of the previously discussed pros and cons to the alternative systems as compared to the current system in tabular form.

SUSCEPTABILTY TO VIBRATION	no change (not very susceptable)	lighter frame (more susceptable)	lighter frame (more susceptable)	lighter frame (more susceptable)	lighter mass (more susceptable)	lighter mass (more susceptable)	lighter mass (more susceptable)
COST	no change (expensive formwork)	shear studs large steel members decking	large steel members decking	many small steel members decking	lower cost due to less concrete expensive formwork	lower cost due to less concrete expensive formwork	lawer cost due to less concrete expensive formwork
LATERAL SUPPORT	no change (no additional support needed due to monolithic pour)	needs cross bracing or moment connections	needs cross bracing or moment connections	needs cross bracing or moment connections	no need for additional moment resistance due to monolithic pour	no need for additional moment resistance due to monolithic pour	no need for additional moment resistance due to monolithic pour
DEPTH	20.5° 25.3°		28.7*	26.2"	19.5*	20.5*	11"
IMPACT ON FOUNDATION	no change	much lighter	much lighter	much lighter	lighter	lighter	lighter
WEIGHT	163,83k	30.234K	35.565K	21.7959K	96.75k	116.72K	91.645K
	CURRENT SYSTEM	ALTERNATIVE 1: COMPOSITE CONSTUCTION	ALTERNATIVE 2: NON-COMPOSITE CONSTUCTION	ALTERNATIVE 3: STEEL JOIST	ALTERNATIVE 4: TWO-WAY SLAB SYSTEM	ALTERNATIVE 5ai ONE-WAY SLAB SYSTEM IN 30-9" DIRECTION	ALTERNATIVE 5b: ONE/WAY SLAB SYSTEM IN 21' DIRECTION

	FIRE PROOFING	CONSTUCTION ISSUES	ERECTION TIME	LOCAL ABILITY	CONCLUSION
CURRENT SYSTEM	no change (not nessessary)	no change (forming takes great deal of time)	no change (low amount of planning great deal on site)	no change (area very involved in concrete construction)	NO CHANGE
ALTERNATIVE 1: COMPOSITE CONSTUCTION	spray on beams and decking	labor for framework and studs	more preliminary order time less on site time	availble but not as prevelent	Okay Alternavtive more vibration and fireproofing
ALTERNATIVE 2: NON-COMPOSITE CONSTUCTION	spray on beams and decking	labor for framework	more preliminary order time less on site time	availble but not as prevelent	Okay Alternavtive more vibration and fireproofing
ALTERNATIVE 3: STEEL OPEN WEB JOIST	spray on beams and decking	labor for framework (many connections)	more preliminary order time less on site time	availble but not as prevelent	Okay Alternavtive more vibration and fireproofing
ALTERNATIVE 4: TWO-WAY SLAB SYSTEM	not nessessary	similar to current (forming takes great deal of time)	similar to current (low amount of planning great deal on site)	similar to current (area very involved in concrete construction)	Good Alternative more vibration less material
ALTERNATIVE 5at ONE-WAY SLAB SYSTEM IN 30'9" DIRECTION	not nessessary	similar to current (forming takes great deal of time)	similar to current (low amount of planning great deal on site)	similar to current (area very involved in concrete construction)	Good Alternative more vibration less material
ALTERNATIVE 5b: ONEWAY SLAB SYSTEM IN 21' DIRECTION	not nessessary	similar to current with change in direction of spans	similar to current (low amount of planning great deal on site)	similar to current (area very involved in concrete construction)	Good Alternative more vibration less material

FDA CDRH Laboratory Silver, Spring Maryland

Conclusion:

By looking at alternatives to the current bay systems, I found that a concern with the new systems was the vibration. All of my alternatives reduced the weight by a great deal and most reduced the total depth of the structural system. This reduction of weight in all the systems also caused for no problems with the foundations systems support. The steel systems also allow for faster erection time on the project site, saving money ,however, depending on the additional lateral resistance system used, it may have additional time needed for the connections. The steel systems, because of their extreme light weight, need for fireproofing and lateral resistance, and lack of local availability of a skilled work force makes for a useable alternative, however, not likely to be as viable of a solution as the concrete alternatives. The concrete alternatives allowed for a the same constructability situations as the current system, however, they too allowed for a much lighter system and at times a much smaller structural depth. The ability to construct with a locally popular construction method and with less material you have the ability to save money. The fact that the concrete systems in general weigh more than steel structures the fact that additional mass will reduce the vibrations is very useful in a situation in which vibrations must be kept to a minimum, because of the precise scientific use of this laboratory. Another positive about the use of concrete when concerning vibrations is the very low level of deflection found in the systems in which girders were used (the one-way systems), the extreme stiffness, allowing for little deflections also allows for very little vibration. Concrete construction on such a stout building takes away the need for additional lateral support because of the monolithic pour causing all connections to be fixed. This system also allow takes away the need for fireproofing. The best alternative at this point seems to be the one-way system that is very similar to the original design, however, by changing the spanning direction, one saves a great deal of space and weight, which also allows for a great financial savings. This coupled with the low additional susceptibility to vibration, and the positives mentioned earlier about concrete construction allows for anticipation of a viable and possibly superior alternative to the current structural system.

FDA CDRH Laboratory Silver, Spring Maryland

Appendix A Alternative 1

Composite Steel System

The first alternative bay system I chose to use was a steel composite system. I chose to evaluate this system by using RAM Structural System, 2003. I laid out the columns in the same configuration as were used by the current system to keep continuity between the new systems and the current architectural features and open spaces found in the building. I then placed intermediate beams between each of the girders which are found spanning the column lines. These beams were spaced so that there were 2 beams spaced equally in both the 15'-5" and the 18' span. There were 4 beams spaced equally in the 30'-9" span. Using the 30'-9" span, the largest span for the decking was found to be 6'-2". I then used the United Steel Deck manual from 2001 to find the appropriate total surface weight on my structure. The loading from the concrete and decking can be found on page 28 (Appendix A.4). The appropriate slab depth and steel decking can be found on page 29 of the USD manual (Appendix A.5). No live load reductions were used due to the fact that they could not be used on the smaller spans (K_{LL}A_T is small then 400 sq ft).

At first I had to assume a weight of concrete and decking to see what depth of concrete would be needed to support my load. After comparing the decking strength to the depth of the concrete I found that a 4.5" concrete slab on 22 gage deck, could be used with a total slab and decking weight of 42psf.

Loading was found by using the following values:

Live load:	125psf
Dead Load:	
Superimposed	25psf
4.5" Slab	<u>42psf</u>
	67psf

Total Load:	1.2 Dead + 1.6 Live
Total Load:	1.2(67psf) + 1.6 (125psf) = 280.4psf

For loading of decking you are to use service live load which equals: 125psf

After all calculations were completed I found that the following values and products to be appropriate for my decking to span 6.5' (the minimum manual distance that is greater then the distance between beams) that could still support a loading of 125psf to be:

2" Lok-floor system 22 gauge steel Slab depth of 4.5"

This will support a load of 365psf

Due to the fact that there is a great deal of additional support, to reduce cost welded wire fabric can be removed from the slab. The amount of load that the slab can support is then reduced to:

365psf - 365psf(.10) = 328.5psf

This value is still sufficient to carry a load of 125psf..

The total surface load is then taken to be (not including self weight of the beams and girders): 328.5psf.

RAM accounts for all factors on loading and deflection limitations

I used 3/4" studs with a 3.5" height to allow for a 1" cover in the 4.5" slab.

I then added an additional line load along the top and bottom of the RAM model to account for exterior wall loads of:160.33plf

This was using the assumptions of the average exterior of the building being represented by: 60% insulated aluminum sheet siding with gypsum wall board interior weighing 12psf 40% glass weighing 8psf

Total exterior wall load:

0.60(12psf) + 0.40(8psf) = 10.4psf 10.4psf (15'-5" tributary story height)=160.33plf

After applying a 6" overhang the following steel beam and girder types were found to be:

Floor Map RAM Steel v8.1 DataBase: FDA-CDRH Laboratory Floor Slab System Building Code: IBC

Floor Type: First

10/26/05 14:45:02

The largest beam being a 21X50 gave a total depth of:20.8"

This added to the slab depth of 4.5" gave a total floor depth for the structural components to be: 4.5"+20.8"=25.3"

Total depth for the 30'-9" bay: 25.3" Total depth for the 18' bay: Depth of a W16X26: 15.7" Total depth = 15.7"+4.5"=20.2" Total depth for the 15'-5" bay: Depth of a W14X22: 13.7" Total depth = 13.7"+4.5"=18.2" Total Weight for the 30'9" bay: Total Weight= (Weight of steel)+(weight of decking) Weight of steel= Σ (weight of each piece)(length of each piece) = ((4.5)(14)+(1)(12))(21')+(1)(50)(30'-9'') = 3112.5lbs Weight of decking = (weight of slab and decking)(area of decking) = (42psf)(30'9")(21')=27121.5lbs Total Weight=3112.5lbs+27121.5lbs=30234lbs=30.234k Total Weight for the 18' bay: Total Weight= (Weight of steel)+(weight of decking) Weight of steel= Σ (weight of each piece)(length of each piece) = ((3)(14))(21')+(1)(26)(18) = 1350lbs Weight of decking = (weight of slab and decking)(area of decking) = (42psf)(18')(21')=15876lbs Total Weight=1350lbs+15876lbs=17229lbs=17.229k Total Wight for the 15' bay: Total Weight= (Weight of steel)+(weight of decking) Weight of steel= Σ (weight of each piece)(length of each piece) = ((2)(12)+(0.5)(14)+(1)(10))(21')+(1)(31)(15'-5'') = 1339lbs Weight of decking = (weight of slab and decking)(area of decking) = (42psf)(15'5")(21')=13597.5lbs Total Weight=1339lbs+13597.5lbs=14936.5lbs=14.9365k

The longest span does have the largest depth and load, therefore it is the critical beam and will be the beam used for comparison in the main report. However, one can also see that by splitting the span in 2 parts the depth of the structural sandwich can be reduced by over a half foot and the weight can be reduced by almost half.

Table from United Steel Deck manual from 2002, Page 28 For a 6'-6" deck span

The **Deck Section Properties** are per foot of width. The I value is for positive bending (in.⁴); t is the gage thickness in inches; **w** is the weight in pounds per square foot; **S**_p and **S**_n are the section moduli for positive and negative bending (in.³); **R**_p and ϕ **V**_n. are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, ϕ **M**_{nt}.

The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. ϕ M_{nf} is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). Ac is the area of concrete available to resist shear, in.2 per foot of width. Vol. is the volume of concrete in ft.3 per ft.2 needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.2. S, is the section modulus of the "cracked" concrete composite slab; in.3 per foot of width. Iav is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The lav transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 10° psi. φ M_{no} is the factored resisting moment of the composite slab if there are no studs on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width). ϕV_{nt} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed $\phi 4(f_c)^{y_2}A_c$; pounds (per foot of width). The next three columns list the maximum unshored spans in feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. Awy is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

	DECK PROPERTIES												
Gage	t	w	As		S _p	S,	R	φV _n	studs				
22	0.0295	1.5	0.440	0.338	0.284	0.302	714	1990	0.36				
20	0.0358	1.8	0.540	0.420	0.367	0.387	1010	2410	0.43				
19	0.0418	2.1	0.630	0.490	0.445	0.458	1330	2810	0.51				
18	0.0474	2.4	0.710	0.560	0.523	0.529	1680	3180	0.57				
16	0.0598	3.1	0.900	0.700	0.654	0.654	2470	3990	0.72				

10.00	CONTRACTOR OF	No. of Street, or			C	OMPOS	TEPR	OPERTI	ES				
	Slab	φM _{ef}	A	Vol.	w	S	lav	φM _{no}	φV _{nt}	Max.u	nshored s	pans, ft.	Awwf
	Depth	in.k	in²	ft3/ft2	psf	in ³	inª.	in.k	Ibs.	1span	Z span	3 span	
	4.50	40.27	32.6	0.292	42	1.05	5.9	29.40	5030	5.82	7.83	7.92	0.023
	5.00	46.44	37.5	0.333	48	1.23	8.0	34.53	5480	5.54	7.47	7.56	0.027
Ð	5.25	49.53	40.0	0.354	51	1.32	9.2	37.16	5720	5.41	7.31	7.39	0.029
D	5.50	52.61	42.6	0.375	54	1.42	10.5	39.81	5960	5.30	7.16	7.24	0.032
ā	6.00	58.78	48.0	0.417	60	1.61	13.5	45.21	6460	5.09	6.89	6.97	0.036
0)	6.25	61.87	50.8	0.438	63	1.71	15.3	47.95	6720	5.03	6.76	6.84	0.038
N	6.50	64.95	53.6	0.458	66	1.81	17.1	50.70	6980	4.97	6.65	6.72	0.041
N	7.00	71.12	59.5	0.500	73	2.01	21.2	56.26	7530	4.85	6.43	6.51	0.045
	7.25	74.21	61.9	0.521	76	2.11	23.5	59.07	7750	4.79	6.32	6.41	0.047
	7.50	77.29	64.3	0.542	79	2.21	26.0	61.88	7970	4.74	6.22	6.31	0.050
	4.50	48.60	32.6	0.292	42	1.26	6.3	35.43	5450	6.81	8.97	9.27	0.023
	5.00	56.18	37.5	0.333	48	1.48	8.6	41.65	5900	6.47	8.55	8.83	0.027
O	5.25	59.96	40.0	0.354	51	1.60	9.8	44.84	6140	6.32	8.36	8.63	0.029
Ø	5.50	63.75	42.6	0.375	54	1.71	11.3	48.07	6380	6.18	8.18	8.45	0.032
<u>n</u>	6.00	71.32	48.0	0.417	60	1.95	14,5	54.63	6880	5.94	7.85	8.11	0.036
0,	6.25	75.11	50.8	0.438	63	2.07	16.3	57.96	7140	5.86	7.70	7.95	0.038
0	6.50	78.90	53.6	0.458	66	2.19	18.2	61.31	7400	5.79	7.56	7.80	0.041
N	7.00	86.47	59.5	0.500	73	2.43	22.6	68.09	7950	5.65	7.29	7.53	0.045
	7.25	90.26	61.9	0.521	76	2.55	25.0	71.50	8170	5.58	7.17	7.41	0.047
	7.50	94.05	64.3	0.542	79	2.67	27.6	74.93	8390	5.52	7.05	7.28	0.050
13.353	4.50	55.85	32.6	0.292	42	1.45	6.7	40.69	5850	7.65	9.76	10.08	0.023
	5.00	64.68	37.5	0.333	48	1.71	9.0	47.87	6300	7.26	9.30	9.61	0.027
0	5.25	69.10	40.0	0.354	51	1.84	10.4	51.56	6540	7.09	9.09	9.39	0.029
age	5.50	73.52	42.6	0.375	54	1.97	11.9	55.30	6780	6.93	8.90	9.19	0.032
10	6.00	82.35	48.0	0.417	60	2.24	15.2	62.90	7280	6.65	8.54	8.83	0.036
07	6.25	86.77	50.8	0.438	63	2.38	17.1	66.76	7540	6.56	8.38	8.66	0.038
6	6.50	91.19	53.6	0.458	66	2.52	19.2	70.65	7800	6.48	8.23	8.50	0.041
-	7.00	100.03	59.5	0.500	73	2.80	23.8	78.50	8350	6.32	7.94	8.20	0.045
	7.25	104.44	61.9	0.521	76	2.94	26.3	82.46	8570	6.24	7.81	8.07	0.047
1233	7.50	108.86	64.3	0.542	79	3.08	29.0	86.45	8790	6.17	7.68	7.94	0.050
121281	4.50	62.08	32.6	0.292	42	1.62	7.0	45.34	6080	8.42	10.48	10.83	0.023
	5.00	72.04	37.5	0.333	48	1.90	9.5	53.36	6670	7.98	9.99	10.32	0.027
0	5.25	77.02	40.0	0.354	51	2.05	10.9	57.48	6910	7.79	9.77	10.10	0.029
Ø	5.50	82.00	42.6	0.375	54	2.20	12.4	61.66	7150	7.61	9.56	9.88	0.032
<u>m</u>	6.00	91.95	48.0	0.417	60	2.50	15.9	70.18	7650	7.30	9.18	9.49	0.036
0,	6.25	96.93	50.8	0.438	63	2.66	17.9	74.50	7910	7.20	9.01	9.31	0.038
00	6.50	101.91	53.6	0.458	66	2.81	20.0	78.85	8170	7.11	8.85	9.14	0.041
-	7.00	111.87	59.5	0.500	73	3.13	24.8	87.66	8720	6.93	8.54	8.82	0.045
	7.25	116.85	61.9	0.521	76	3.28	27.4	92.10	8940	6.85	8.40	8.68	0.047
1839	7.50	121.83	64.3	0.542	79	3.44	30.2	96.57	9160	6.77	8.26	8.54	0.050
	4.50	62.08	32.6	0.292	42	1.99	7.7	45.34	6080	9.58	11.63	12.02	0.023
	5.00	72.04	37.5	0.333	48	2.35	10.4	53.36	6980	9.08	11.10	11.47	0.027
0	5.25	77.02	40.0	0.354	51	2.53	11.9	57.48	7450	8.85	10.85	11.22	0.029
0	5.50	82.00	42.6	0.375	54	2.72	13.6	61.66	7940	8.65	10.63	10.98	0.032
0	6.00	91.95	48.0	0.417	60	3.10	17.4	70.18	8460	8.29	10.21	10.55	0.036
0	6.25	96.93	50.8	0.438	63	3.29	19.5	74.50	8720	8.17	10.02	10.35	0.038
0	6.50	101.91	53.6	0.458	66	3.48	21.8	78.85	8980	8.07	9.84	10.17	0.041
T	7.00	111.87	59.5	0.500	73	3.88	27.0	87.66	9530	7.86	9.50	9.82	0.045
	7.25	116.85	61.9	0.521	76	4.08	29.8	92.10	9750	7.77	9.35	9.66	0.047
	7.50	121.83	64.3	0.542	79	4.28	32.8	96.57	9970	7.67	9.20	9.50	0.050

									2)	c 12"	DEC	ĸ	F, =	33ksi	f'	. = 3 ksi	145 pc	cf concrete
	9. F. S. B		0.022		New York	L, Unif	orm Li	ive Se	rvice L	.oads,	psf *							
	Slab	∲Mn t in.k	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00			(LHD
	4.50	40.27	400	365	310	265	230	200	175	155	135	120	105	95	85			
Ìğ	5.50	52.51	400	400	400	300	300	250	230	200	155	140	140	125	110			
19	6.00	58,78	400	400	400	390	135	295	255	225	200	175	155	140	125		1 STUD/FT.	
2	7.00	71.12	400	400	400	400	400	365	310	275	240	215	190	170	150			
5	7.25	74.21	400	400	400	400	400	370	325	285	250	225	200	175	155		NO STUDS	
	4.50	48,60	400	400	380	325	285	245	215	190	170	150	135	120	110	1.1		
ÌŽ	5.50	63.75	400	400	400	400	330	325	285	220	225	200	105	140	125			
8	6.00	71.32	400	400	400	400	400	365	320	285	250	225	200	180	160	* The tim	uiform Live Lo	ards are based or
10	7.00	86.47	400	400	400	400	400	400	390	345	305	270	240	215	195	the LRF	D equation & M	4, = (1.6L + 1.2D)/9/8
2	7.25	90.26	400	400	400	400	400	400	400	360	320	285	255	225	205	Althoug	h there are oth	er load combina-
0	4.50	55.85	400	400	400	380	330	290	255	225	200	180	160	145	130	tions th	at may require	investigation, this
ģ	5.50	73.52	400	400	400	400	385	335	335	290	230	235	210	190	170	equatio	n assumes the	re is no negative
3	6.00	82.35	400	400	400	400	400	400	375	335	295	265	235	215	190	bending	reinforcemen	t over the beams
6	7.00	100.03	400	400	400	400	400	400	400	400	380	320	290	260	235	and the	refore each co	mposite slab is a
-	7.25	104,44	400	400	400	400	400	400	400	400	375	335	300	270	245	single s	pan. Two sets	of values and
	4.50	62.08	400	400	400	400	370	325	285	255	225	200	180	160	145	uniform	load when the	full required
Ĭğ	5.00	72.04	400	400	400	400	400	375	335	295	260	235	210	215	170	number	of studs is pre	sent; ϕM_m is
8	6.00	91.95	400	400	400	400	400	400	400	375	335	300	270	245	220	used to	calculate the lo	oad when no studs
0	7.00	111.87	400	400	400	400	400	400	400	400	400	365	330	295	270	are pres	sent. A straight i	ine interpolation
1	7.25	116,85	400	400	400	400	400	400	400	400	400	385	345	310	280	studs is	between zero	and the required
-	4.50	62.08	400	400	400	400	370	325	285	255	225	200	180	160	145	number	needed to dev	velop the "full"
Ĭğ	5.00	72.04 82.00	400	400	400	400	400	375	335	295	260	235	210	215	170	factored	moment. The	tabulated loads
18	6.00	91.95	400	400	400	400	400	400	400	375	335	300	270	245	220	are che seldom	cked for shear (controlling (it
9	7.00	101.91	400	400	400	400	400	400	400	400	400	365	300	270	285	load def	flection of 1/360	0 of the span.
-	7.25	115.85	400	400	400	400	400	400	400	400	400	385	345	310	280			
24.1	4.50	29.40	305	255	215	185	160	135	120	105	90	80	70	60	50	An uppe	er limit of 400 p	sfhas been
	5.00	34.53 39.81	380	305	255	220	185	160	140	120	105	95 110	95	70	65	been do	to the tabulated ine to quard act	ainst ecuating
	6.00	45.21	400	402	340	250	250	215	185	160	140	125	110	95	85	large co	ncentrated to u	iniform loads.
	7.00	56.26	400	400	400	360	310	270	235	205	180	155	140	120	105	Concen	trated loads m	ay require special
	7.25	59.07 61.88	400	400	400	380	325	285	245	215	190	165	145	130	115	servicib	ility requirement	nts not covered
	4.50	35.43	375	315	270	230	200	170	150	130	115	100	90	30	70	by simp	ly using a unif	orm load value.
	5.50	48.07	400	400	315	315	235	205	205	155	135	120	105	110	95	On the o	other hand, for	any load
	6.00	54.63	400	400	400	360	310	270	235	205	180	160	140	125	110	combina	ation the value:	s provided by the
	7.00	68.09	400	400	400	400	390	335	295	260	230	200	180	160	140	calculati	ons.	ALL DE USEU IT LIE
1	7.25	71.50	400	400	400	400	400	355	310	270	240	210	190	165	150			
	4.50	40.69	400	370	315	270	230	200	175	155	135	120	105	95	85	Weided	wire fabric in th	he required
	5.50	47.87	400	400	400	315	320	240	210	215	160	145	125	115	100	amount If welde	is assumed for d wire fabric is	not present
	6.00	62.90	400	400	400	400	355	315	275	245	215	190	170	150	135	deduct '	10% from the li	isted loads.
	7.00	78.50	400	400	400	400	400	395	310	305	270	240	215	190	170			
	7,25	36.45	400	400	400	400	400	400	365	320	285	255	225	200	180	Refer to	the example p	roblems for the
	4.50	45.34	400	400	350	300	280	230	200	175	155	140	125	110	100	USB OF IT	te tables.	
	5.00	53.38	400	400	400	400	310	315	225	210	215	165	145	130	115			
	6.00	70,18	400	400	400	400	400	350	315	275	245	229	195	175	155			
	7.00	87.66	400	400	400	400	400	400	395	350	310	275	245	220	196			
	7.25	92.10	400	400	400	400	400	400	400	365	325	290	250	230	210			
	4.50	45.34	400	400-	350	300	200	230	200	175	155	140	125	110	100			
	5.00	53.38 61.56	400	400	400	355	310	270	235	210	185	165	145	130	115			
	5.00;	70.18	400.:	400	400	400	400	360	315	275	245	220	195	175	155			
10	7.00	78,85	400	400	400	400	400	400	355	110	275	245	220	195	175			
	7.25	92.10	400-	400	400	400	400	400	400	165	325	290	250	230	210			
	- BY	19.91		+00	-00	-440	400	-00	-900	- 00	340	-10	210	240	140			

cial

FDA CDRH Laboratory Silver, Spring Maryland

Appendix B Alternative 2

Non-Composite Steel System

The second alternative bay system I chose to use was a steel non-composite system. I chose to evaluate this system by using RAM Structural System, 2003 as well. I laid out the columns, girders, and beams in the same fashion as the first alternative in order to keep constancy with both the current system, as well as the alternative systems for more accurate comparisons. Once again the largest spacing for the deck to span was found to be 6'-2". I then used the United Steel Deck manual from 2001 to find the appropriate total surface weight on my structure. The loading from the concrete can be found on page57 (Appendix B.5). The appropriate slab depth and steel decking can be found on page 55 of the USD manual (Appendix B.4). I then needed to check to find the appropriate welded wire mesh to confirm slab depth as well as carrying capacity from page 59 in the USD manual (Appendix B.6). No live load reductions were used do to the fact that they could not be used on the smaller spans (K_{LL}A_T is small then 400 sq ft).

At first I had to assume a weight of concrete and decking to see what depth of concrete would be needed to support my load but after comparing the decking strength and the welded wire mesh to the depth of the concrete I found that a 5.0" concrete slab could be used with a total slab and decking weight of 48psf.

Loading was found by using the following values:

Live load:	125psf
Dead Load:	
Superimposed	25psf
5.0" Slab	<u>48psf</u>
	73psf

Total Load:	1.2 Dead + 1.6 Live
Total Load:	1.2(73psf) + 1.6(125psf) = 287.6psf

The welded wire mesh was what actually controlled the depth of the concrete in which a 5" slab over a 6.5' span would need to have 44-W2.9 X 2.9 welded wire mesh to support the load or 287.6psf

After all calculations were completed I found that the following values and products to be appropriate for my decking to span 6.5' (the minimum manual distance that is greater then the distance between beams) that could still support a loading of 287.6psf, in the three span condition, with the LRFD reduction factors to be:

UF2X floor system 22 gauge steel Slab depth of 5.0" 44- W2.9 X 2.9 welded wire mesh

This will support a load of 332psf

The total surface load is then taken to be (not including self weight of the beams and girders): 287.6psf

RAM accounts for all factors on loading and deflection limitations

I then added an additional line load along the top and bottom of the RAM model to account for exterior wall loads of: 160.33plf

This was using the assumptions of the average exterior of the building being represented by: 60% insulated aluminum sheet siding with gypsum wall board interior weighing 12psf 40% glass weighing 8psf

Total Exterior load:

0.60(12psf) + 0.40(8psf) = 10.4psf10.4psf (15'-5" tributary story height)=160.33plf

After applying a 6" overhang the following steel beam types were.

Floor Map

DataBase: FDA-CDRH Laboratory Floor Non Composite Slab System

10/26/05 00:59:09

Floor Type: First

(A.)	7	W12x19		W12x19		W12x19		 !_
		W14x22		W14x22		W14x22		
	W14x	W14x22		W14x22		W14x22	W14X	
(в.)	#	W14x22		W14x22	<u>+</u>	W14x22		
		W14x22		W14x22		W14x22		
	W16x	W14x22		W14x22		W14x22	W16X	
(c	<u>#</u>	W14x22		W14x22	 	W14x22	 	
\bigcirc	Í	W14x22		W 14x22		W14x22		
		W14x22		W14x22		W14x22	55	
	WD4x	W14x22	W24x	W14x22		W14x22	W24x	
		W14x22		W 14x22		W14x22		
D	4	W12x19	<u>_</u>	W12x19		W12x19	<u> </u>	
	\bigcirc		(8)		్ర			

The largest beam being a 24X68 gave a total depth of:

This added to the slab depth of 5" gave a total floor depth for the structural components to be: 5"+23.7"=28.7"

Total depth for the 30'-9" bay: 28.7" Total depth for the 18' bay: Depth of a W16X36: 15.9" Total depth = 15.9"+4.5"=20.4" Total depth for the 15'-5" bay: Depth of a W16X31: 15.9" Total depth = 15.9"+4.5"=20.4" Total Weight for the 30'9" bay: Total Weight= (Weight of steel)+(weight of decking) Weight of steel= Σ (weight of each piece)(length of each piece) = ((4.5)(22)+(1)(19))(21')+(1)(68)(30'-9'') = 4569lbs Weight of decking = (weight of slab and decking)(area of decking) = (48psf)(30'9")(21')=30996lbs Total Weight=4569lbs+30996lbs=35565lbs=35.565k Total Weight for the 18' bay: Total Weight= (Weight of steel)+(weight of decking) Weight of steel= Σ (weight of each piece)(length of each piece) = ((3)(22))(21')+(1)(36)(18) = 2034lbs Weight of decking = (weight of slab and decking)(area of decking) = (48psf)(18')(21')=18144lbs Total Weight=2034lbs+18144lbs=20178lbs=20.178k Total Wight for the 15' bay: Total Weight= (Weight of steel)+(weight of decking) Weight of steel= Σ (weight of each piece)(length of each piece) = ((2.5)(22)+(1)(19))(21')+(1)(31)(15'-5'') = 2032lbs Weight of decking = (weight of slab and decking)(area of decking) = (48psf)(15'5")(21')=15540lbs

Total Weight=2032lbs+15540lbs=17572lbs=17.572k

The longest span does have the largest depth and load, therefore it is the critical beam and will be the beam used for comparison in the main report. However, one can also see that by splitting the span in 2 parts the depth of the structural sandwich can be reduced by almost 3/4 of a foot and the weight can be greatly reduced.

Table from United Steel Deck manual from 2002, Page 55 For a 6'-6" deck span

		SEC	TION	PROPER	TIES			ASD				
	Metal Thic	kness	Wt.	او	s,	S,	v	Re	R ₂	٩٧	¢R,	φ R 2
Gi	age Inc	thes	(psf)	(in.ª)	(in.3)	(in.3)	(lbs)	(lbs)	(lbs)	(Ibs)	(lbs)	(155)
1	24 0.0	0239	1.50	0.232	0.192	0.200	2360	360	836	3223	532	1155
	22 0.0)295	2.00	0.300	0.252	0.263	4205	528	1484	54/7	/36	1992
	20 0.0	358	2.00	0.379	0.325	0.339	6062	/28	2224	11192	1649	5388
	18 0.0	1474	3.00	0.523	0.468	0.485	8/30	1204	3940	11102	1 1040	3300
	UF2X		2		2'	Ħ	30° cover	[N Th flan action sh	e bottom nge can cept a ¾" ear stud.	¥
			UN	IFORM TO		<	6" pitch	1/180 Defie	ection, psf	approx.	scale: 1½" = 1	1'0"
	Gage	Spa						Span	0101	0.01	OICH	
		Condi	tion	6.0	6'6"	7'0"	7'6"	8.0.	8.6	9.0	90	46 / 20
	67	Sing	le	128/94	109/74	94/59	82/48	72/40	64/33	50/67	53 (57	40/20
	743	Dout	ne	130 / 225	111 / 1/8	907 143 1207 143	105/01	02/75	82/62	73/52	66/45	59/38
		Sing	io	169/122	143/96	1207112	108/62	94/51	84/43	75/36	67/31	60/26
	99	Doub	ie ja	173/203	148/230	128/184	111 / 150	98/123	87 / 103	78/87	70/74	63/63
•	744	Triu	e	215/229	184 / 180	159 / 144	109/117	122/97	108/81	97/68	87/58	78/49
5		Sing	le	217/154	185/121	159 / 97	139/79	122/65	108 / 54	96/46	86/39	78/33
1	50	Dout	ble	224/370	191/291	165/233	144 / 189	126 / 156	112/130	100 / 110	90/93	81/80
	LAU	Trip	e	279/289	238 / 228	205 / 182	179/148	158 / 122	140 / 102	125 / 86	112/73	101/63
		Sing	le	312/212	266 / 167	229/133	200 / 109	176 / 89	155 / 75	139/63	124 / 53	112/46
	5 : {	Doub	aie	320 / 510	273/401	236 / 321	206 / 261	181/215	160 / 179	143/151	128 / 129	116 / 110
		Trip	e	399 / 399	340/314	294 / 252	256 / 204	226 / 168	200 / 140	179 / 118	160 / 101	145/86
		Sing	le	177/94	164 / 74	149 / 59	130 / 48	114/40	101/33	90 / 28	81/24	73/20
	- Z4	Doub	ble	154 / 226	142 / 178	132 / 143	123/116	116/96	104 / 80	93/67	83 / 57	75/49
		Trip	e	175/177	162 / 139	150 / 112	140/91	131/75	124 / 62	115/52	103/45	94/38
		Sing	le	245/122	226 / 96	195 / 77	170/62	150 / 51	133/43	118/36	106/31	96/26
	744	Dout	le	266 / 293	233/230	201 / 184	176/150	155 / 123	137/103	122/8/	110//4	39/03
	CHOICE HIGH MADE	Trip	Ð	302/229	279/180	250 / 144	218/117	192 / 97	1/1/81	152/68	137/58	124/49
14		Sing	le	335/154	292 / 121	252/97	220779	193765	1/1/04	152/40	142/02	124/33
F	40	Dout	le	353/370	301/291	2607233	2277189	2007156	1777130	107/86	177 / 73	160/63
1000		Inp	e	418/289	424 1467	324 / 182	203/148	249/122	246/75	220/63	197/53	178/46
155		Sing	ie la	484/212 505/510	421/10/	272/224	310/108	2/0/09	253/170	228/151	203/129	183/110
	10	Trin	ine lo	827/300	536 (314	463/252	404/204	356 / 169	318/140	282/118	253/101	229/86
10.00		inp	e	02//399	0307314	403720Z	4047204	3301.100	3107140	2021110	2007101	220700

NOTES:

Vented deck with 1.5% open area is available for use with insulating fills. Insulating fill manufacturers have determined load capacities of various combinations of fill and deck both with and without foamed plastic insulation boards. Refer to the fill manufacturer's ilterature for loading limitations.

R, is the bearing capacity at an exterior condition. R1 is the bearing capacity at an interior condition.

Table from United Steel Deck manual from 2002, Page 57 For a 6'-6" deck span

profile considerations

UFS, UF1X and UFX-36 have a b width of 12" for both positive and negative bending. For D < 3" place the mesh in the center of the concrete that is above the ribs. For D > 3", mesh is draped, not layered.

¥.

Inverted B and UF2X have a b width of 12" for positive bending. For negative bending the b width for Inverted B deck is 7.5"; for UF2X the negative bending b width is 6". For D > 3" mesh is draped, not layered.

FORM DECKS weights and volumes

To	tal	UFS	UF1X	UFX	INV. B	UF2X
Slab	Depth	C _v = .0234	C, = .0417	C, = .0547	C, = .0781	C, = .0833
2.5"	Wt Vol.	27 0.185				
3.0"	Wt Vol.	33 0.226	30 0.208	28 0,195		
3.5"	Wt Vol.	39 0.268	36 0.250	34 0.237	36 0.245	
4.0"	Wt	45	42	40	41	36
	Vol.	0.310	0.292	0.279	0.286	0.250
4.5"	Vvt	51	48	46	48	42
	Vol.	0.352	0.333	0.320	0.328	0.292
5.0"	Wt	57	54	52	54	48
	Vol.	0.393	0.375	0.362	0.370	0.333
5.5"	Wt	63	. 60	59	60	54
	Vol.	0.435	0.417	0.404	0.411	0.375
6.0"	Wt	69	66	65	66	60
	Vol.	0.476	D.458	0.445	0.453	0.417
6.5"	Wt	75	73	71	72	67
	Vol.	0.518	0.500	0.487	0.495	0.459
7.0"	Wt	81	79	77	78	73
	Vol.	0.560	0.542	0.528	0.536	0.500

The weights are shown in pounds par square foot and are based on 145 pcf concrete. Volumes are in ft.³ per ft.³, C, is the volume of concrete required to fill the rbs. Multiply the volume shown in the table by 144 to find the gross area of concrete in in³/ft.

FORM DECK SLABS

			and the second	13.63553						Spar	ns, feet				
Slab	Mesh	+d	-d	+M	-M	4'6"	5'0"	5'6"	6'0"	6'6"	7'0"	7'6"	8'0"	8'6"	9'0'
4.0"	66 - W2.0 x 2.0* 66 - W2.9 x 2.9	1.919 1.904	3.007 2.962	4.060 5.785	6.326 8.921	157 224	127 181	105 150	88 126	75 107	65 93	57 81	50 71	44 63	56
4.5"	66 - W4.0 x 4.0 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.387 2.404 2.387	3.412 3.462 3.412	9.975 10.893 14.708	14.062 15.463 20.585	386 ### ###	313 342 ###	259 282 381	217 237 320	185 202 273	160 174 235	139 152 205	122 133 180	108 118 160	97 105 142
5.0"	66 - W4.0 x 4.0* 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.887 2.904 2.887	3.912 3.962 3.912	12.135 13.242 17.948	16.222 17.812 23.825	### ### ###	381 ### ###	315 343 ###	264 289 389	225 246 332	194 212 286	169 185 249	149 162 219	132 144 194	117 128 173
5.5"	44 - W2.9 x 2.9* 44 - W4.0 x 4.0	3.404 3.387	4.462 4.412	15.591 21.188	20.161 27.065	### ###	### ###	392 ###	329 ###	281 377	242 325	211 283	185 249	164 220	140 191
6.0"	44 - W4.0 x 4.0	3.887	4.912	24.428	30.305	###	###	###	###	###	364	317	279	247	220
6.5"	44 - W4.0 x 4.0	4.387	5.412	27.668	33.545	###	###	###	###	###	###	351	308	273	244
7.0"	44 - W4.0 x 4.0	4.887	5.912	30.908	36.785	###	###	###	###	###	###	385	338	299	26

Spans, feet 6'6" 8'0" 8'6" Slab Mesh +d -d +M -M 4'0" 4'6" 5'0" 5'6" 6'0" 7'0" 7'6" 66 - W2.0 x 2.0* 1.919 2.507 4.060 5.274 194 153 124 103 86 73 63 55 48 3.5" 66 - W2.9 x 2.9* 1.904 2.462 5.785 7.414 273 215 174 144 121 103 89 78 68 66 - W4.0 x 4.0 2.387 2.912 9.975 12.015 ### 349 283 234 258 196 167 144 126 139 110 98 4.0" 44 - W2.9 x 2.9 44 - W4.0 x 4.0 2.404 2 962 10 893 13.248 ### 385 312 216 184 159 122 108 2.387 17.599 ### 342 288 245 211 184 143 2.912 14.708 ### ### 162 66 - W4.0 x 4.0* 2.887 3.412 12.135 14.175 ### ### 334 276 232 197 170 148 130 115 367 ### 255 341 4.5" 44 - W2.9 x 2.9 2.904 3.462 13.242 15.597 ### ### 303 217 187 163 143 127 290 218 170 44 - W4.0 x 4.0 250 192 2.887 3.412 17.948 20.839 ### ### ### 17.946 ### ### ### 349 293 250 215 188 165 146 44 - W2.9 x 2.9* 3.404 3.962 15.591 5.0" 44 - W4.0 x 4.0 3.387 3.912 21.188 24.079 ### ### ### ### 393 335 289 252 221 196 251 222 ### ### 380 328 286 44 - W4.0 x 4.0 4.412 24.428 27.319 ### ### ### 5.5" 3.887 ### ### ### 367 320 281 6.0" 44 - W4.0 x 4.0 4.387 4.912 27.668 30.559 ### ### ### 6.5" 44 - W4.0 x 4.0* 4.887 5.412 30.908 33.799 ### ### ### ### ### ### ### 353 311 - 22 gage -- 20 gage 18 gage -16 gage-

Slab, +d, and -d are in inches.

+M and -M are in kip inches. (per foot of width).

* As does not meet ACI criterion. (.0018 Ac for temperature steel.)

59

Heavy lines are based on three span conditions.

means the calculated live loads exceed 400 psf.

DRAPED MESH CONSTRUCTION

FDA CDRH Laboratory Silver, Spring Maryland

Appendix C Alternative 3

Steel Joist System

The third alternative bay system I chose to use was a open web steel joist system. I also chose to evaluate this system by using the RAM Structural System, 2003. I laid out the columns, girders, and beams in the same fashion as the first and second alternative in order to keep constancy with both the current system, as well as the other alternative systems for more accurate comparisons. I chose to space joist 2' apart, and they will run parallel to the 21' girders. The 21' direction was chose due to the large span of 30'-9'' controlling the spanning direction for the entire floor system. The constancy with spanning direction is preferred due to necessity to order differing lengths of joist as well as confusion on the job site if changing of joist direction is implemented. I then used the United Steel Deck manual from 2001 to find the appropriate total surface weight on my structure. The loading from the concrete can be found on page57 (Appendix C.5). The appropriate slab depth and steel decking can be found on page 52 of the USD manual (Appendix C.4). The appropriate welded wire mesh can be found on USD page 58 (Appendix C.6). No live load reductions were used do to the fact that they could not be used on the smaller spans (K_{LL}A_T is less then 400 sq ft).

At first I had to assume a weight of concrete and decking to see what depth of concrete would be needed to support my load but after comparing the decking strength and the welded wire mesh to the depth of the concrete I found that a 2.5" concrete slab could be used with a total slab and decking weight of 27psf.

I found the joist weight by first estimating a weight and using RAM to find a good estimate of the joists to be used. I then used this value to find the exact joist that would hold the total weight of the slab, decking, and self-weight from page 23 of the New Columbia Joist Company Steel Joist and Joist Girders manual from 2002 (Appendix C.7). I continued to work between RAM and the manual until both the manual and RAM values for the joist matched. The self-weight of the 16K3 joists was found to be 6.3plf which when divided by the tributary width of 2' was found to be 3.15psf.

Loading was found by using the following values: Live load: 125psf

Dead Load:	-
Superimposed	25psf
2.5" Slab	27psf
16K3 Joist	<u>3.15 psf</u>
	55.15psf

Total Load:	1.2 Dead + 1.6 Live
Total Load:	1.2(55.15psf) + 1.6(125psf) = 266.18psf

The welded wire mesh to support this load over the depth of the concrete in which a 2.5" slab over a 2' span would need to have 66-W 1.4 X 1.4 to support the load of 272psf.

I found that this system needed: 2.5" slab 16K3 Joist 28 gage UFS Form deck 66-W 1.4 X 1.4

The total surface load is then taken to be (including the self-weight of the joists and not including self-weight of the girders):266.18psf.

RAM accounts for all factors on loading and deflection limitations

I then added an additional line load along the top and bottom of the RAM model to account for exterior wall loads of: 160.33plf

This was using the assumptions of the average exterior of the building being represented by: 60% insulated aluminum sheet siding with gypsum wall board interior weighing 12psf 40% glass weighing 8psf

Total Exterior load:

0.60(12 psf) + 0.40(8 psf) = 10.4 psf10.4psf (15'-5" tributary story height)=160.33plf

After applying a 6" overhang the following steel beam types were .

Floor Map

RAM Steel v8.1 DataBase: FDA-CDRH Laboratory Floor Open Joist Slab System Building Code: IBC Floor Type: First

10/26/05 00:56:46

The largest beam being a 24X62 gave a total depth of:

This added to the slab depth of 2.5" gave a total floor depth for the structural component to be: 2.5"+ 23.7"=26.2"

Total depth for the 30'-9" bay: 26.2" Total depth for the 18' bay: Depth of a W18X35: 17.7" Total depth = 15.7"+4.5"=22.2" Total depth for the 15'-5" bay: Depth of a W16X26: 15.7" Total depth = 13.7"+4.5"=20.2" Total Weight for the 30'9" bay: Total Weight= (Weight of steel)+(weight of decking)+(weight of joists) Weight of steel= Σ (weight of each piece)(length of each piece) = ((0.5)(12)+(1)(14))(21')+(1)(62)(30'-9'') = 2326.5lbs Weight of decking = (weight of slab and decking)(area of decking) = (27psf)(30'9")(21')=17435.25lbs Weight of Joists=(weight of joist)(area joist support) =(3.15psf)(30'9")(21')=2034.1125lbs Total Weight=2326.5lbs+17435.25lbs+2034.1125lbs=21795.9lbs=21.7959k Total Weight for the 18' bay: Total Weight= (Weight of steel)+(weight of decking)+(weight of joists) Weight of steel= Σ (weight of each piece)(length of each piece) = ((0.5)(12)+(0.5)(14))(21')+(1)(35)(18') = 903lbs Weight of decking = (weight of slab and decking)(area of decking) = (27psf)(18')(21')=10206lbs Weight of Joists=(weight of joist)(area joist support) =(3.15psf)(18')(21')=1190.7lbs Total Weight=903lbs+10206lbs+1190.7lbs=12299.7lbs=12.2997k Total Wight for the 15' bay: Total Weight= (Weight of steel)+(weight of decking)+(weight of joists) Weight of steel= Σ (weight of each piece)(length of each piece) = ((1.5)(14))(21')+(1)(26)(15'-5'') = 841.83lbs Weight of decking = (weight of slab and decking)(area of decking) = (27psf)(15'5")(21')=8741.25lbs Weight of Joists=(weight of joist)(area joist support) =(3.15psf)(15'5")(21')=1019.8125lbs Total Weight=841.83lbs+8741.25lbs+1019.8125lbs=10602.9lbs=10.6029k

The longest span does have the largest depth and load, therefore it is the critical beam and will be the beam used for comparison in the main report. However, one can also see that by splitting the span in 2 parts the depth of the structural sandwich can be reduced by almost half foot and the weight can be reduced by almost half.

USD United Steel Deck. Inc. urn LRFD ASD SECTION PROPERTIES **Metal Thickness** v R₂ Wt. s, s, ١. (lbs) (lbs) (lbs) Inches (in.4) (in.3) (in.3) Gage (psf) 1944 643 643 0.037 1634 413 432 28 0.0149 1.00 0.012 0.036 2327 826 1104 0.0179 1.00 0.015 0.046 0.047 1956 547 797 26 2595 864 1670 3087 1238 2323 0.0239 1.00 0.020 0.065 0.064 24 22 0.0295 1.50 0.025 0.080 0.079 3224 1248 2803 3787 1690 3773 UFS 30" cover 13' 16 <u>9"</u> 16 $\frac{13"}{16}$ 21/2" Pitch approx. scale: 11/2" = 1'0" UNIFORM TOTAL LOAD / Load that Produces I/180 Deflection, psf Span Span Condition Gage 4'6" 5'0" 5'6" 6'0" 2'0" 2'6" 3'0" 3'6" 4'0" 54 / 16 35/8 29/6 24/5 Single 216/131 138/67 96/39 71/25 43/12 28 141 / 162 98/94 72/59 55/40 44/28 35/20 29/15 25/12 Double 219/316 55/22 44/16 37/12 31/9 175 / 127 122 / 73 90/46 69/31 Triple 272 / 247 276 / 164 177 / 84 123 / 49 90/31 69/21 55/14 44 / 11 36/8 31/6 Single 70/49 56/35 45/25 37 / 19 31/15 92/74 Double 278/395 179/202 124 / 117 46/15 ASD 39/11 Triple 345 / 309 222 / 158 155 / 92 114 / 58 88/39 69/27 56 / 20 127/41 98/27 62/14 52 / 11 43/8 390/219 250 / 112 173/65 77 / 19 Single 24 Double 378 / 527 243 / 270 169 / 156 125 / 98 96 / 66 76/46 61/34 51/25 43/20 119/52 63/20 53/15 469/412 302/211 211/122 155 / 77 94/36 76/26 Triple 77/18 63 / 13 53 / 10 95/24 Single 480 / 274 307 / 140 213/81 157 / 51 120/34 154 / 123 118 / 82 93 / 58 76/42 63/32 53/24 466 / 659 300 / 337 209 / 195 Double 94/33 78/25 66/19 147 / 64 116/45 Triple 579/515 373 / 264 261 / 153 192 / 96 55/8 45/6 38/5 342/131 219/67 152/39 112/25 85/16 68/12 Single Double 257 / 316 206 / 162 154/94 114 / 59 87 / 40 69/28 56 / 20 46 / 15 39/12 142/46 70/16 49/9 109/31 58/12 234 / 127 192/73 86/22 Triple 292 / 247 437 / 164 194 / 49 143/31 109/21 86/14 70 / 11 58/8 49/6 Single 280 / 84 71/25 59/19 49/15 88/35 144 / 74 111/49 Double 434 / 395 281/202 196 / 117 348 / 158 180 / 58 138 / 39 109 / 27 89/20 73/15 62/11 Triple 502 / 309 244 / 92 LRFD 274 / 65 202/41 154 / 27 122 / 19 99/14 82 / 11 69/8 617/219 395 / 112 Single 590 / 527 382 / 270 267 / 156 197 / 98 151/66 119/46 97/34 80/25 67/20 Double 331 / 122 245 / 77 188 / 52 149 / 36 121/26 100 / 20 84 / 15 729/412 473/211 Triple 760 / 274 486 / 140 338 / 81 248/51 190/34 150 / 24 122 / 18 100 / 13 84 / 10 Single 119/42 99/32 83/24 Double 329 / 195 243 / 123 186 / 82 147 / 58 728 / 659 471/337 104 / 19 149/33 123 / 25 Triple 899 / 515 584 / 264 409 / 153 302/96 232 / 64 184 / 45

NOTES:

R1 is the bearing capacity at an exterior condition. R2 is the bearing capacity at an interior condition.

UFS 52

Wt

Vol.

Wt

Vol.

Wt

Vol.

Wt

Vol.

Wt

Vol.

5.0"

5.5"

6.0"

6.5"

7.0"

0

57

0.393

63

0.435

69

0.476

75

0.518

81

0.560

54

0.375

60

0.417

66

0.458

73

0.500

79

0.542

52

0.362

59

0.404

65

0.445

71

0.487

77

0.528

54

0.370

60

0.411

66

0.453

72

0.495

78

0.536

48

0.333

54

0.375

60

0.417

67

0.459

73

0.500

FORM DECK SLABS

USD United Steel Deck, Inc.

UNITO UNITION TO THE OF	DS ON UFS FORM deck - UNIFORM LOADS,	deck.	form	n UFS	labs	te s	oncrei	C
--	---	-------	------	-------	------	------	--------	---

								SI	pans, fee	et		
Slab	Mesh	+d	-d	+M	-M	2'0"	2'3"	2'6"	2'9"	3'0"	3'3"	3'6"
2.5"	66 - W1.4 x 1.4*	0.969	1.250	1.423	1.848	272	215	174	144	121	103	89
	66 - W2.0 x 2.0*	0.969	1.250	2.008	2.615	385	304	246	203	171	146	126
	66 - W2.9 x 2.9*	0.969	1.250	2.856	3.737	###	###	352	291	244	208	179
3.0"	66 - W1.4 x 1.4*	1.219	1.500	1.801	2.226	327	259	210	173	146	124	107
	66 - W2.0 x 2.0*	1.219	1.500	2.548	3.155	###	367	297	245	206	176	152
	66 - W2.9 x 2.9*	1.219	1.500	3.639	4.520	###	###	###	352	295	252	217
3.5"	66 - W2.9 x 2.9*	2.842	2.181	8.721	6.652	###	###	###	###	###	370	319
	66 - W4.0 x 4.0*	2.825	2.131	11.865	8.866	###	###	###	###	###	###	###
4.0"	66 - W2.9 x 2.9*	3.342	2.681	10.287	8.218	###	###	###	###	###	###	395
	66 - W4.0 x 4.0*	3.325	2.631	14.025	11.026	###	###	###	###	###	###	###
					1.1		- 28 0000 -		26 0	200	24.0	200

CONCrete Slabs on UF1X form deck - UNIFORM LOADS, PSF

										Spar	ns, feet				
Slab	Mesh	+d	-d	+M	-M	2'0"	2'6"	3'0"	3'6"	4'0"	4'6"	5'0"	5'6"	6'0"	6'0"
3.0"	66 - W2.0 x 2.0* 66 - W2.9 x 2.9	1.000 1.000	1.500 1.500	2.075 2.954	3.155 4.520	### ###	260 371	181 257	133 189	102 145	80 114	65 93	54 77	45 64	
3.5"	66 - W4.0 x 4.0 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.387 2.404 2.387	1.912 1.962 1.912	9.975 10.893 14.708	7.921 8.817 11.628	### ### ###	### ### ###	### ### ###	380 ### ###	291 324 ###	230 256 338	186 207 274	154 171 226	129 144 190	110 123 162
4.0"	66 - W4.0 x 4.0 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.887 2.904 2.887	2.412 2.462 2.412	12.135 13.242 17.948	10.081 11.166 14.868	### ### ###	### ### ###	### ### ###	### ### ###	371 ### ###	293 324 ###	237 263 350	196 217 289	165 182 243	140 155 207
4.5"	44 - W2.9 x 2.9 44 - W4.0 x 4.0	3.404 3.387	2.962 2.912	15.591 21.188	13.515 18.108	### ###	### ###	### ###	### ###	### ###	393 ###	318 ###	263 352	221 296	188 252
5.0"	44 - W4.0 x 4.0	3.887	3.412	24.428	21.348	###	###	###	###	###	###	###	###	349	297
5.5"	44 - W4.0 x 4.0	4.387	3.912	27.688	24.588	###	###	###	###	###	###	###	###	###	342
6.0"	44 - W4.0 x 4.0	4.887	4.412	30.908	27.828	###	###	###	###	###	###	###	###	###	
							26 0	age		- 24	page	- 22	dade	-20 gage -	

concrete slabs on UFX-36 form deck - UNIFORM LOADS, PSF

										Spar	ns, feet				
Slab	Mesh	+d	-d	+M	-M	3'6"	4'0"	4'6"	5'0"	5'6"	6'0"	6'6"	7'0"	7'6"	8'0"
3.0"	66 - W2.0 x 2.0* 66 - W2.9 x 2.9	0.844	1.500 1.500	1.738 2.465	3.155 4.520	111 158	85 121	67 95	55 77	45 64	54	40			
3.5"	66 - W4.0 x 4.0 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.075 2.092 2.075	1.756 1.806 1.756	8.625 9.425 12.683	7.246 8.083 10.615	348 388 ###	266 297 390	210 235 308	170 190 250	141 157 206	118 132 173	101 113 148	86 97 127	75 84 111	66 74 97
4.0"	66 - W4.0 x 4.0 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.575 2.592 2.575	2.256 2.306 2.256	10.785 11.774 15.923	9.406 10.432 13.855	### ### ###	346 384 ###	273 303 ###	221 245 326	183 203 269	154 170 226	131 145 193	112 125 166	98 109 144	86 95 127
4.5"	44 - W2.9 x 2.9 44 - W4.0 x 4.0	3.092 3.075	2.806 2.756	14.123 19.163	12.781 17.095	### ###	### ###	371 ###	301 ###	249 332	209 279	178 238	153 205	133 178	117 157
5.0"	44 - W4.0 x 4.0	3.575	3.256	22.403	20.335	###	###	###	###	395	332	283	244	212	186
5.5"	44 - W4.0 x 4.0	4.075	3.756	25.643	23.575	###	###	###	###	###	385	328	283	246	216
6.0"	44 - W4.0 x 4.0	4.575	4.256	28.883	26.815	###	###	###	###	###	###	373	321	280	
							— 26 gage -		24 g	lage	22 g	jage ——	20 g	lage	

58

STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES

Based on a Maximum Allowable Tensile Stress of 30 ksi Adopted by the Steel Joist Institute November 4, 1985; Revised to May 1, 2000 – Effective August 1, 2002

The <u>black</u> figures in the following table give the TOTAL safe uniformly_distributed_load-carrying_capacities, in <u>pounds</u> <u>per linear foot</u>, of K-Series Steel Joists. The weight of DEAD loads, including the joists, must be deducted to determine the LIVE load-carrying capacities of the joists. Sloped parallel-chord joists shall use span as defined by the length along the slope.

The figures shown in RED in this load table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the figures in RED by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

The approximate joist weights per linear foot shown in these tables do not include accessories.

The approximate moment of inertia of the joist, in inches⁴ is; $l_j = 26.767(W_{LL})(L^3)(10^6)$, where $W_{LL} = \text{RED}$ figure in the Load Table and L = (Span - .33) in feet.

For the proper handling of concentrated and/or varying loads, see Section 5.5 in the Recommended Code of Standard Practice for Steel Joists and Joist Girders.

Where the joist span exceeds the unshaded area of the load table, the row of bridging nearest the mid-span shall be diagonal bridging with bolted connections at the chords and intersections.

STANDARD	LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES
Based	on a Maximum Allowable Tensile Stress of 30 ksi

Joist	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
Depth (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt (lbs./ft.)	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
Span (ft.)												1.1.100	1			
8	550 550									0.000						
9	550 550		er bere		57											
10	550 480	550 550						3 08								
11	532	550														
12	444	550 455	550 550	550 550	550 550											
13	377 225	479 363	550 510	550 510	550 510	04460										
14	324 179	412 289	500 425	550 463	550 463	550 550	550 550	550 550	550 550		5126					
15	281 145	358 234	434 344	543 428	550 434	511 475	550 507	550 507	550 507					-		
16	246 119	313 192	380 282	476 351	550 396	448 390	550 467	550 467	550 467	550 550	550 550	550 550	550 550	550 550	550 550	550 550
17	110	277	336	420 291	550 366	395 324	495 404	550 443	550 443	512 488	550 526	550 526	550 526	550 526	550 526	550 526
18		246	299	374	507	352	441	530 397	550 408	456 409	508 456	550 490	550 490	550 490	550 490	550 490
19		221	268 167	335	454	315 230	395 287	475 336	550 383	408 347	455 386	547 452	550 455	550 455	550 455	550 455
20		199	241 142	302	409	284	356	428	525 347	368	410 330	493 386	550 426	550 426	550 426	550 426
21		51	218	273	370 198	257 170	322	388 248	475 299	333 255	371 285	447 333	503 373	548 405	550 406	550 406
22			199	249	337	234	293 184	353 215	432 259	303 222	337 247	406 289	458 323	498 351	550 385	550 385
23			181	227	308 150	214	268 160	322 188	395 226	277 194	308 216	371 252	418 282	455 307	507 339	550 363
24			166 81	208	282	196	245 141	295 165	362 199	254 170	283 189	340 221	384 248	418 269	465 298	550 346
25				101		180 100	226	272 145	334 175	234 150	260 167	313 195	353 219	384 238	428 263	514 311
26	1					166 88	209	251 129	308 156	216 133	240 148	289 173	326 194	355 211	395 233	474 276
27						154 79	193 98	233	285 139	200 119	223 132	268 155	302 173	329 188	366 208	439 246
28						143 70	180 88	216 103	265 124	186 106	207 118	249 138	281 155	306 168	340 186	408 220
29										173 95	193 106	232 124	261 139	285 151	317 167	380 198
30										161 86	180 96	216 112	244 126	266 137	296 151	355 178
31										151 78	168 87	203 101	228 114	249 124	277 137	332 161
32										142	158	190	214	233	259 124	311

C.7

FDA CDRH Laboratory Silver, Spring Maryland

Appendix D Alternative 4

Two-Way Concrete System

For my fourth alternative I chose to use the material of the current structure (concrete), however, I am going to try an alternative 2-way system. I used the CRSI 2002 edition to find the slab information needed.

Each bay was designed separately due to the different sizes using chapter 10 (two-way systems) of the CRSI manual. Each span may also have different loading conditions depending on the allowed live load reduction.

Each slab had to be looked at as if were square due to the 2-way system being used for equal widths and depths. I will go over the each bay by it largest length to ensure that they system will hold the required loading.

For the 30'-9" span

The bay is considered 31' X 31' external

Live load reduction (from ASCE7-02 equation 4-1)

$$\begin{split} L = & L_o(0.25 + 15/\sqrt{(K_{LL}A_T)}) \\ & K_{LL} = 1 \text{ (from ASCE7-02 table 4-2)} \\ & A_T = 30.75 \times 21 = 645.75 \text{ sq ft} \\ & K_{LL}A_T \text{ is greater then 400 sq ft therefore live load reduction can be used} \\ & L = (125\text{psf})(0.25 + 15/\sqrt{(1 \times 645.75)}) = 105\text{psf} \end{split}$$

Live load with reduction 105psf

Dead load = superimposed dead load = 25psf

Total Load = 1.4 Dead + 1.7 Live (due to the use of 2002 CRSI manual) = 1.4 (25psf) + 1.7(105psf) = 213.5psf

Using page 10-25 (Appendix D.6) of the CRSI I found the following characteristics needed to support this span with a load of 213.5psf:

Drop panels with a 9.00" depth by 10.33' width. Columns that are 24" square Column Strip Reinforcement: Top External: 17-#5 Bottom: 18-#8 Top Internal: 14-#8 Middle Strip Reinforcement: Bottom: 12-#8 Top Internal: 13-#7

The load limit of 300psf greatly exceeds the required strength of 213.5psf.

Total Depth: 19.5" Slab Depth: 10.5" Drop Panel Depth: 9"

Weight per bay = (Area of concrete structure)(150pcf) Area slab = (10.5")(30'-9")(21')=565cf Area drop panels = (9")(10.33')(10.33')=80cf Total Area = 565cf+80cf=645cf Weight per bay =(645pcf)(150pcf)=96750lbs=96.75k For the 18' span

Live load reduction (from ASCE7-02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{LL}A_{T})})$ $K_{LL} = 1 \text{ (from ASCE7-02 table 4-2)}$ $A_{T} = 15.4167 \times 21 = 323.75 \text{ sq ft}$ $K_{LL}A_{T} \text{ is less then 400 sq ft therefore live load reduction can not be used}$

Live load is 125psf

Dead load = superimposed dead load = 25psf

```
Total Load = 1.4 Dead + 1.7 Live (due to the use of 2002 CRSI manual)
= 1.4 (25psf) + 1.7(125psf) = 247.5psf
```

The bay size is considered 21' X 21' external (Due to the depth being shorter then the width of 21')

Using page 10-11 (Appendix D.4) of the CRSI I found the following characteristics needed to support this span with a load of 247.5psf:

Drop panels with a 6.00" depth by 7.00' width. Columns that are 19" square Column Strip Reinforcement: Top: 14.#5 Bottom: 19.#4 Middle Strip Reinforcement: Top: 14.#4 Bottom: 12.#4

The load limit of 300psf greatly exceeds the required strength of 247.5psf.

The total depth of this slab system is :

```
Total Depth: 13"
Slab Depth: 7"
Drop Panel Depth: 6"
```

```
Weight per bay = (Area of concrete structure)(150pcf)
Area slab = (7")(18')(21')=220.5cf
Area drop panels = (6")(7')(7')=24.5cf
Total Area = 220.5cf+24.5cf=245cf
Weight per bay
=(245pcf)(150pcf)=36750lbs=36.75k
```

For the 15'-5" span

Live load reduction (from ASCE7-02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{LL}A_{T})})$ $K_{LL} = 1 \text{ (from ASCE7-02 table 4-2)}$ $A_{T} = 18 \times 21 = 378 \text{ sq ft}$ $K_{LL}A_{T} \text{ is less then 400 sq ft therefore live load reduction can not be used}$ Live load is 125psf

Dead load = superimposed dead load = 25psf

Total Load = 1.4 Dead + 1.7 Live (due to the use of 2002 CRSI manual) = 1.4 (25psf) + 1.7(125psf) = 247.5psf

The bay size is considered 21' X 21' internal (Due to the depth being shorter then the width of 21')

Using page 10-11 (Appendix D.5) of the CRSI I found the following characteristics needed to support this span with a load of 247.5psf:

Drop panels with a 6.00" depth by 7.00' width. Columns that are 16" square Column Strip Reinforcement: Top External: 12-#4 Bottom: 19-#5 Top Internal: 22-#4 Middle Strip Reinforcement: Bottom: 19-#4 Top Internal: 16-#4

The load limit of 300psf exceeds the required strength of 247.5psf.

Total Depth: 13" Slab Depth: 7" Drop Panel Depth: 6"

```
Weight per bay = (Area of concrete structure)(150pcf)

Area slab = (7")(15'-5")(21')=189cf

Area drop panels = (6")(7')(7')=24.5cf

Total Area = 189cf+24.5cf=213.5cf

Weight per bay

=(213.5pcf)(150pcf)=32025lbs=32.025cf
```

As one can guess the worst case is the largest span with a total depth of 19.5" and total weight of 96.75k. Both the other bays were over a half foot shallower with a depth of only 13" as well as almost one third the weight (averaging around 35k). Although the smaller spans will not be looked at further in this design, they can be used to compare how making a bay contain smaller spans can allow for a lower total floor sandwich depth and a much lower weight.

Table from CRSI 2002, Page 10-11 For the 18' span

CONCRETE REINFORCING STEEL INSTITUTE

10-11

Table from CRSI 2002, Page 10-11 For the 15'-5" span

						the second se	The second s	****
		Concrete cu. ft	\sq. ft	NELS	0.611 0.620 0.630 0.663	0.611 0.620 0.630 0.630	0.620	0.639 0.663
IEL	C.W	Total	(bsl)	ROP PA	1.64 1.97 2.42 2.91	1.72 2.12 2.58 3.12	1.77 2.28	2.79 3.47
RAN s ⁽²⁾	RS (E.	Strip	Bottom	VEEN DI	14-#3 14-#3 9-#4 12-#4	14#3 15#3 11#4 13#4	15#3 10#4	12-#4 10-#5
RIOF Panel	NG BA	Middle	Top	H BETV	10-#4 10-#4 11-#4 13-#4	10-#4 10-#4 12-#4 10-#5	生き	14-#4 12-#5
INTE Drop No Be	FORCI	Strip	Bottom	B DEPT	13#3 11-#4 9-#5 12-#5	9-#4 13-#4 16-#4 13-#5	10-#4 15-#4	19-#4 15-#5
IARE With	REIN	Column	Top	AL SLA	11#4 14#4 11#5 12#5	13-#4 17-#4 19-#4 14-#5	12.#5	14-#5 25-#4
nòs	(8)	olumn	ize (in.)	ı. = TOT	15 18 19	20 1 9 12 20	15	19
	ictored	-muad	(bsl) Si	h = 7 in	100 200 400	100 200 400	100	300 400
		list C	CŽ		20.7 69.9 19.4 68.6	41.5 99.6 55.6 13.2	65.1 32.9	98.4 60.8
	IENTS	- G	÷¥		89.6 1 26.2 1 63.0 2 14.0 2	05.1 1 48.3 1 89.9 2 33.6 3	22.6 1 73.0 2	21.7 2 68.0 3
iels	MOM	ge B	() ()		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1 6.3 2.6 5.3 2.1 1 1 1 1 1 1	1.3 1.	4.0 2 2 2 2
p Pan		E	-= 		8 5 5 5 7 6 6 7 7 6 6 7	116 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	96 50 86	24 11(11 13/
th Dre	2	Tota Coto	(bst	rs	327	3553	1.5	4 32
YSTE Wit	S (E. V	Ile Strip	int.	P PANE	10# 10# 12# 14# 14#	11-14-11 14-11 14-11 14-11 14-11		16#2
AB S L Beam	BARS	Mido	Bottom	N DROI	13-#3 11-#4 9-#5 12-#5	15#3 16#4 13#5	10-#4 10-#5	15-#5
T SLJ PANE No	RCING	Ê	int op	ETWEEI	12-#4 16-#4 12-#5 13-#5	14#4 12#5 14#5 16#5	15#4	22-#4 18-#5
FLA.	INFO	mn Strip	Bottom	EPTH B	11-#4 16-#4 21-#4 19-#5	13-#4 19-#4 16-#5 11-#7	10-#5 22-#4	19-#5 17-#6
ARE E	R	Colu	+ +	SLAB DI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	244 2 244 2 244 2 244 2	2#1 2 2#1 4	2.# 2 3.# 2
nòs		- UUI	χ. 	TOTAL \$	697 1 638 1 650 1 636 1	711 167	754 1 761 1	666 1
	(5)	uare Colt	स्ट्र	7 in. = 1	0000	0000	4 0.	90
		b S	79 8 -	h = 1	88888	2222	88	10 2
psi ars	and and	Panel			0000	0000	0 7.6	0 8,4
,000 60 Ba	pe	3	(iu)		00000	30 6.0 0.0 0 0 0 0 0 0	5.0	6.0
= 4 ade (Factore	posed	(lsd)		400 500 1 00	400 400	100	400
r, Gr	NVUG	01210 0.00	Ē		9 6 6 6 6	20 20 20 20 20 20	21	21

CONCRETE REINFORCING STEEL INSTITUTE

10-11

	-						-						_										_		 		
		Concrete	sq. ft	ANELS	0.931	0.944	0.995	0.995	0.931	0.958	0.958 0.995	0 044	0.944	0.958	0.995	0.944	0.958	0 958	0.958	0.958	0.958	0.958	0.995				
Ш	(.W	Total	(psf)	DROP P	2.29	3.39	3.02 4.41	5.19	2.40	3.40	4.24	2.4R	3.07	3.75 4.51	5.25	2.52	4.01	2 57	3.43	5.16	2.77	3.60	5.65				
R PAN	RS (E.	Strip	Bottom	WEEN D	10#5 10#5	11-#5	15-#5	18-#5	10-#5	12-#5	15#5 9#7	11-45	1#2	10-#6 12-#6	10#7	11-#5 17-#5	15-#5	11.世代	10-16	12-#6 20-#5	12-#5	15#5	12#7				
RIOR Panels	NG BA	Middle	đ	TH BET	10-#5 10-#5	9 . #6	10-#1	11-#7	10-#5	10#9	9=#7 14-#6	11.#5	13-#5	16-#5 10-#7	12-#7	11-弗5	10-#7	10. 莊氏	19 19 19	14-#6	14-#5	13-#6	14	1			ab.
INTE Drop No Be	FORCI	Strip	Bottom	AB DEF	10-#5 13-#5	9#12 1#5	12-#7	11-#8	12-#5	13-#6	9+#8 11-#8	13.#5	12#6	21	12-#8	14-#5	17-#6 12-#8	16.45	21月2	10#0	18-#5	23-#5 24 #6	1 # 1				1 below sl
JARE With	REIN	Column	Iop	OTAL SI	14-#5 18-#5	15-86	28.#5 28.#5	12-#8	16-#5	15-#6	18-#6 12-#8	16-#5	15#6	13#7	13-#8	18-#5 15-#6	26#5 13#8	18-#5	12年1	16-#7	20-#5	28-#5 1 1 1 2	16-#8				above and
sộl	(2)	Column	Size (in.)	in = T	12	53	3 8	26	99	28	53	4	8	5 5	27	51 E	2 2	ę	1 @ 8	8 2	12	5 5	18			3	mn size a
	actored	posed	lead (Jsd)	h = 10.5	100 200	300	005	600	100	0000	500	100	200	300	200	200	300	100	500	400	100	88	99 94				ame colu
	s	ti :	£) ∰⊥		408.1 533.6	658.8	906.1	1022.5	458.5	740.1	882.8 1010.7	514.2	671.1	829.4 983.1	1119.4	572.8	922.7 1091.1	637 B	830.7	1016.6	705.1	914.3 1120.0	1302.9				els. (3) S
	MENT	Bot.	(j¥		303.2 396.4	489.4	673.1	772.7	340.6	549.8	655.8 750.8	382.0	498.5	616.1 730.3	831.6	425.5	685.5 810.5	473 G	617.1	888.3	523.8	679.2	67.9	1			edge pan
anels	M	Edge) H H		151.6 198.2	244.7	336.6	379.8	170.3	274.9	327.9 375.4	191.0	249.3	308.1 365.1	415.8	212.8	342.7 405.3	236.8	308.5	3//.b 444.1	261.9	339.6	483.9				ze as for
Drop F		Total	(psf)	(0)	2.46 3.08	3.83	5.17	6.00	2.66	3.96	4.88 5.70	2.74	3.50	4.32 5.20	5.95	2.88	4.75 5.68	3 00	3.99	5.96	3.29	4.29	6.43				s same siz
STEN With I	E. W.)	Strip	da ti	PANELS	10#5 11#5	10-#6	10-#1	8#-6	10-#5	1#6	10-#7 15-#6	11-#5	10-#6	17-#5 11-#7	10-#8	12弗5 11-#6	19-#5 10-#8	13-45	17-#5	18-#6	15-#5	19-#5	12-#8				op panels
B SY Beams	BARS (Middle	Bottom	N DROP	10-#5 13-#5	9#12 14.46	12-#7	6年-6	12-#5	10-#7	8#-6	13.#5	12-#6	11-#7 10-#8	12-#8	10#6	10-#8 12-#8	16.45	11-井	10-#9	13-#6	12-#7	11-#9				ip. (2) Dr
- SLA PANEL No E	CING F		in po	ETWEE	15-#5 14-#6	12-#7	12#8	13#8	12-#6	12-#7	12-#8 13-#8	9#2	16#6	26-#5 16-#7	14-#8	14-將 23-持	15-#7 14-#8	14-#6	18-18	15-#8	16-#6	15 #1	14-#9				olumn str
FLAT	INFOR	nn Strip (1	Bottom	DEPTH B	15#5 11#7	18-#6	12曲	17-#8	9-#7	15-#7	14-#8 13-#9	19-#5	18-#6	13-#8 13-#9	18-#8	22-#5 15-#7	12-#9 14-#9	17-#6	13-#8	16-#9	11	18-#8	17-#9				third of o
UARE E	RE	Colur	+ Exteor	L SLAB [12-#5 2 12-#5 4	12-約 2	14-45 2	16-#5 3	12#5 3	12-15 2	14-#5 4 16-#5 3	13-#5 2	13-#5 4	13-#5 5 15-#5 4	17-#5 2	13-#5 3 13-#5 3	14#5 5 17#5 3	14-#5 1	14-#5 4	18#5 5	14-#5 3	11-#5 6	14-#6 4				the middle
SQI		umnio	Υŗ	= TOTA	0.760	0.679	0.707	0.701	0.797	0.634	0.741	0.750	0.767	0.745	0.644	0.787	0.763	0 792	0.763	0.700	0.777	0.731	0.697				placed in
	9	Square C	Size (in.)	10.5 in.	12	90 20	32	26	12	2 @	នុង	12	9	23 18	58	12	19	12	1 2 2	38	12	2 22	31				s may be
	Dron	- IB	(ii)	- <i>4</i>	8.67 8.67	8.67	10.40	10.40	00.0	00.6	9.00	9.33	9.33	9.33	11.20	9.67	9.67	10.00	00.00	12.00	10.33	10.33	12.40				these bar
00 ps	Sourare	Pan	(in.)		6.00	4 00	00.6	9.00	6.00	006	0.0	7.50	7.50	00.6	00.6	9.00	00.6	9.00	9.00	00.6	9.00	006	9.00				ercent of
= 4,0 de 60	actored	posed	(bsd)		200	300	200	600	001	300	200	100	200	300 406	200	200 200	900 400	100	200	400	100	300	400				(1) 50 p
f, : Gra	CDAM	0.0	ĴĒ		26	28	8	58	27	121	22	28	28	88	58	59	29	30	8.5	88	5	n en	31				NOTES

CONCRETE REINFORCING STEEL INSTITUTE

10-25

Appendix E Alternative 5

One-Way Concrete System

The fifth comparison that I did was a comparison using my current floor system (one-way slab) with a new spacing. I used the CRSI 2002 to find the slab requirements. Each bay was designed separately due to the different sizes using chapter 8 (one-way systems) of the CRSI manual. Each span may also have different loading conditions depending on the allowed live load reduction.

Each slab will have a l_n of 1' less then the length of the actual span due an assumed square column of 12" (6" from each column supporting the beam).

For the 30'-9" span

The bay is considered 30' exterior clear span

Live load reduction (from ASCE7-02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{LL}A_{T})})$ $K_{LL} = 1 \text{ (from ASCE7-02 table 4-2)}$ $A_{T} = 30.75 \times 21 = 645.75 \text{ sq ft}$ $K_{LL}A_{T} \text{ is greater then 400 sq ft therefore live load reduction can be used}$ $L=(125\text{psf})(0.25 + 15/\sqrt{(1 \times 645.75)}) = 105\text{psf}$

Live load with reduction 105psf

Dead load = superimposed dead load = 25psf

Total Load = 1.4 Dead + 1.7 Live (due to the use of 2002 CRSI manual) = 1.4 (25psf) + 1.7(105psf) = 213.5psf

Using page 8-30 (Appendix E.10) of the CRSI, I found the following characteristics needed to support this span with a load of 213.5psf:

30" forms 7" ribs width 16" rib depth 37" center to center distance 4.5" slab depth Reinforcement: Top bars: #5 @ 8" Bottom bars: 2.#7

Using page 8-2 (Appendix E.9) of the CRSI, the following welded wire fabric should be placed with the larger diameter wires placed normal to the span of the joints. 4X12-W3.5XW2

The load limit of 260psf exceeds the required strength of 213.5psf.

There is no need for deflection limitation calculations due to the chosen values being above the deflection line on the table.

Total Depth: 20.5" Slab Depth: 4.5" Rib Depth: 16"

Total Weight of slab and joists= (Square area of slab)(weight from CRSI page 8-13) (Appendix E.14). =(30.75')(21')(101psf)=6522075lbs=65.22k For the 18' span

The bay is considered 17' interior clear span

Live load reduction (from ASCE7-02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{LL}A_{T})})$ $K_{LL} = 1 \text{ (from ASCE7-02 table 4-2)}$ $A_{T} = 18 \times 21 = 378 \text{ sq ft}$ $K_{LL}A_{T} \text{ is less then 400 sq ft therefore live load reduction can not be used}$

Live load is 125psf

Dead load = superimposed dead load = 25psf

Total Load = 1.4 Dead + 1.7 Live (due to the use of 2002 CRSI manual) = 1.4 (25psf) + 1.7(125psf) = 247.5psf

Using page 8-14 (Appendix E.11) of the CRSI, I found the following characteristics needed to support this span with a load of 247.5psf:

20" forms 5" ribs width 8" rib depth 25" center to center distance 3" slab depth Reinforcement: Top bars: #4 @ 10" Bottom bars: 1-#3, 1-#4

Using page 8-2 (Appendix E.9) of the CRSI, the following welded wire fabric should be placed with the larger diameter wires placed normal to the span of the joints. 4X12-W2.1XW1.4

The load limit of 273psf exceeds the required strength of 247.5psf.

There is no need for deflection limitation calculations due to the chosen values being above the deflection line on the table.

Slab Depth: 3" Rib Depth: 8"

Total Depth: 11"

Total Weight of slab and joists= (Square area of slab)(weight from CRSI page 8-13) (Appendix E.15) =(18')(21')(60psf)=22680lbs=22.68k For the 15'-5" span

The bay is considered 15' exterior clear span

Live load reduction (from ASCE7.02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{LL}A_{T})})$ $K_{LL} = 1 (from ASCE7.02 table 4-2)$ $A_{T} = 15.4167 \times 21 = 323.75 \text{ sq ft}$ $K_{LL}A_{T} \text{ is less then 400 sq ft therefore live load reduction can not be used}$

Live load is 125psf

Dead load = superimposed dead load = 25psf

Total Load = 1.4 Dead + 1.7 Live (due to the use of 2002 CRSI manual) = 1.4 (25psf) + 1.7(125psf) = 247.5psf

Using page 8-14 (Appendix E.12) of the CRSI, I found the following characteristics needed to support this span with a load of 247.5psf:

20" forms 5" ribs width 8" rib depth 25" center to center distance 3" slab depth Reinforcement: Top bars: #4@8" Bottom bars: 2#4

Using page 8-2 (Appendix E.9) of the CRSI, the following welded wire fabric should be placed with the larger diameter wires placed normal to the span of the joints. 4X12-W2.1XW1.4

The load limit of 321psf exceeds the required strength of 247.5psf.

There is no need for deflection limitation calculations due to the chosen values being above the deflection line on the table.

Slab Depth: 3" Rib Depth: 8"

Total Depth: 11"

Total Weight of slab and joists= (Square area of slab)(weight from CRSI page 8-13) (Appendix E.16) =(15'-5")(21')(60psf)=19425lbs=19.425k

I also made a comparison using my current floor system (one-way slab) with a new spacing and a new direction for the 30'-9" bay. By making the floor span in the 21' direction, I will be able to reduce the depth of the concrete, however, this will cause for discontinuity between each spans direction of span. I used the CRSI 2002 to find the slab requirements.

Each slab will have a l_n of 1' less then the length of the actual span due an assumed square column of 12" (6" from each column supporting the beam).

For the 21' span

The bay is considered 20' exterior clear span

Live load reduction (from ASCE7-02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{1L}A_{T})})$ $K_{LL} = 1 \text{ (from ASCE7-02 table 4-2)}$ $A_{T} = 30.75 \times 21 = 645.75 \text{ sq ft}$ $K_{LL}A_{T} \text{ is greater then 400 sq ft therefore live load reduction can be used}$ $L=(125\text{psf})(0.25 + 15/\sqrt{(1 \times 645.75)}) = 105\text{psf}$

Live load with reduction 105psf

Dead load = superimposed dead load = 25psf

Total Load = 1.4 Dead + 1.7 Live (due to the use of 2002 CRSI manual) = 1.4 (25psf) + 1.7(105psf) = 213.5psf

Using page 8-30 (Appendix E.10) of the CRSI, I found the following characteristics needed to support this span with a load of 213.5psf:

20" forms 5" ribs width 8" rib depth 25" center to center distance 3" slab depth Reinforcement: Top bars: #5 @ 10" Bottom bars: 2#5

Using page 8-2 (Appendix E.9) of the CRSI, the following welded wire fabric should be placed with the larger diameter wires placed normal to the span of the joints. 4X12-W2.1XW1.4

The load limit of 233psf exceeds the required strength of 213.5psf.

Due to the chosen values location below the deflection limitation line, a deflection limitation calculation did have to be performed using the following equation:

Thickness $\geq l_n/18.5$

 $l_n=20'$ 3>(20/18.5)=1.081 This is true, therefore deflection is satisfactory

Slab Depth: 3" Rib Depth: 8"

Total Depth: 11"

Total Weight of slab and joists= (Square area of slab)(weight from CRSI page 8-13) (Appendix E.17) =(30.75')(21')(60psf)=38745lbs=38.745k The longest span does have the largest depth and load, therefore it is the critical beam and will be the beam used for comparison in the main report, however, it will be compared in both spanning directions due to the fact that by changing the spanning direction the weight of the slab and joists, as well as the depth was reduced by about one half. Although the two smaller spans are not being compared, the 21' spanning direction does allow for a good understanding of how these shorter spans will reduce weight as well as depth a great deal compared to the larger span.

The next element that needed to be designed was the girders. By looking at the two worst cases (both span directions of the 30'-9" bay) a good picture of how changing the span direction will greatly effect the girder size and weight. Also this smaller span will give a good example of what the girders for the smaller bays will be.

Girder Designs (for the 2 worst cases-30'9" X 21' and 21' X 30'9")

Long span design (30'-9" X 21')

The girder has a 30'-9" X 21' tributary width

Live load reduction (from ASCE7-02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{LL}A_{T})})$ $K_{LL} = 1 \text{ (from ASCE7-02 table 4-2)}$ $A_{T} = 30.75 \times 21 = 645.75 \text{ sq ft}$ $K_{LL}A_{T} \text{ is greater then 400 sq ft therefore live load reduction can be used}$ $L=(125\text{psf})(0.25 + 15/\sqrt{(1 \times 645.75)}) = 105\text{psf}$

Live load with reduction 105psf

 $w_u = 1.2 (62.55 \text{psf}+25 \text{psf}) + (1.6)(105 \text{psf}) = 314.1 \text{psf}$

 $W_u = (314.1psf)(21') = 6596.1plf = 6.6klf$

Girder is spanning 30'-9"-(2(6")=29'-9"

$$M_{u} = \frac{W_{u}L^{2}}{8} = \frac{(6.6 \text{klf})(30'-9'')^{2}}{8} = 780.1'\text{k}$$

 f'_{c} = 4ksi f_{y} = 60ksi ρ =0.6 ρ_{max} = 0.6(0.0206) = 0.0124 (for tension controlled section) d= 20.5"-2.5"=18"

$$\begin{split} M_{u} &\leq \Phi M_{n}^{-} \Phi \rho b d^{2} f_{y}(1.059 \rho(f_{y}/f_{C})) \\ & 780.1' k = 0.9(0.0124) (b d^{2}) (60 k si) (1.0.59(0.0124) (60 k si/4 k si)) (1'/12'') \\ & b d^{2} = 15703.6 \\ & d = 18'' \\ & b = 48.5'' \\ & h = 20.5'' \end{split}$$

 $W_{u beam}$ = (1.2)(48.5")(20.5")(150pcf)/(144in²/1ft²)= 1242.8plf = 1.24klf

$$M_{u \text{ beam}} = 780.1$$
'k + $(1.24$ klf) $(30'9'')^2 = 926.66$ 'k
8

Steel Design

```
 \begin{split} M_{u} &\leq \Phi A_{s} df_{y} (1.059 \rho(f_{y}/f_{C})) \\ 926.66' k = 0.9 A_{s} (18'') (60 ksi) (1-0.59 (0.0124) (60 ksi/4 ksi)) (1'/12'') \\ A_{s} = 12.85 in^{2} \\ & \text{Use } 6 \# 14 \ (A_{s} = 13.5 in^{2}) \end{split}
```

Deflection Check

 $I = (1/12)(bh^3) = (1/12)(48.5")(20.5")^3 = 34819.46in^4$

W_u = 6.6klf+1.24klf=7.84klf (1'/12")=0.653k/in=653lb/in

E=3.6 X 10⁶psi ∆≤L/240 ∆≤(30.75')(12"/1')/240=1.5"

 $\Delta = \frac{5W_u L^4}{384 \text{EI}} = ((5)(653 \text{lb/in})(30.75')^4) / ((384)(3.6 \text{ X } 10^6 \text{psi})(5102 \text{in}^4)) = 0.000000014''$

0.000000014"≤1.5" Beam is more then adiquite for deflection

Assume each column is 12" then beams are spanning length-1'

Weight of beam:

Weight of beam=(area of beam)(150pcf) =(29'-9")(20.5")(48.5")(150pcf)=30811.4lbs=30.8k (long span) =(20')(20.5")(48.5")(150pcf)=20713.54lbs=20.7k (short span)

```
Total Weight of bay (assuming 1/2 of a beam on each side)
=(weight of 2(1/2) beams) + (weight of 2(1/2) beams) + (wieght of slab and joists)
=30.8k + 20.7k + 65.22k = 116.72k
```

Short span design (21' X 30'-9")

The girder has a 24'.4.5" X 21' tributary width Tributary width was found by: ((30'.9"+18")/2) X 21'

Live load reduction (from ASCE7-02 equation 4-1) $L=L_{o}(0.25 + 15/\sqrt{(K_{LL}A_{T})})$ $K_{LL} = 1 (from ASCE7-02 table 4-2)$ $A_{T} = 24.375 \times 21 = 511.875 \text{ sq ft}$ $K_{LL}A_{T} \text{ is greater then 400 sq ft therefore live load reduction can be used}$ $L=(125\text{psf})(0.25 + 15/\sqrt{(1 \times 511.875)}) = 114\text{psf}$

Live load with reduction 114psf

 $w_u = 1.2 (38.745 \text{psf}+25 \text{psf}) + (1.6)(105 \text{psf}) = 244.494 \text{psf}$

 $W_u = (244.494 \text{psf})(24'-4.5") = 5959.5 \text{plf} = 6.0 \text{klf}$

 $M_{u} = \frac{W_{u}L^{2}}{8} = \frac{(6.0 \text{klf})(21')^{2}}{8} = 330.75' \text{k}$

 $f_{c}^{c} = 4ksi$ $f_{y}^{c} = 60ksi$ $\rho = 0.6\rho_{max} = 0.6(0.0206) = 0.0124$ (for tension controlled section) d = 11".2.5"=8.5" $M_{u} \le \Phi M_{n} = \Phi \rho b d^{2} f_{y}(1.059 \rho (f_{y}/f_{c}))$

 $\begin{array}{c} 330.75' \text{k=} 0.9(0.0124)(\text{bd}^2)(60\text{ksi})(1-0.59(0.0124)(60\text{ksi}/4\text{ksi}))(1'/12")\\ \text{bd}^2 = 6658\\ \text{d=} 8.5"\\ \text{b=} 92.2"\\ \text{h=} 11"\end{array}$

 $W_{u \text{ beam}}$ = (1.2)(92.2")(11")(150pcf)/(144in²/1ft²)=1267.75plf=1.27klf

 $M_{u \text{ beam}}$ = 330.75'k + <u>(1.27klf)(21')²</u> = 400.76'k

Steel Design

$$\begin{split} M_{u} &\leq \Phi A_{s} df_{v}(1.059 \rho(f_{v}/f_{C})) \\ 400.76' k = 0.9 A_{s}(18")(60 \text{ksi})(1.0.59(0.0124)(60 \text{ksi}/4 \text{ksi}))(1'/12") \\ A_{s} = 5.56 \text{in}^{2} \\ & \text{Use } 6\#9 \; (A_{s} = 6 \text{in}^{2}) \end{split}$$

Deflection Check

 $I = (1/12)(bh^3) = (1/12)(99.2")(11")^3 = 11002.93in^4$

W_u = 6.0klf+1.27klf=7.27klf (1'/12")=0.605k/in=605lb/in

E=3.6 X 10⁶psi ∆≤L/240 ∆≤(21')(12"/1')/240=1.05"

 $\Delta = \frac{5W_u L^4}{384 \text{EI}} = ((5)(605 \text{lb/in})(21')^4) / ((384)(3.6 \text{ X } 10^6 \text{psi})(11002.93 \text{in}^4)) = 0.00003868"$

0.00003868"≤1.05" Beam is more then adiquite for deflection.3

Assume each column is 12" then beams are spanning length-1'

Weight of beam:

Weight of beam=(area of beam)(150pcf) =(20')(11")(92.2")(150pcf)=21129.167lbs=21.1k (short span) =(29.9')(11")(92.9")(150pcf)=31827.93lbs=31.8k (Long span)

Total Weight of bay (assuming 1/2 of a beam on each side)

=(weight of 2(1/2) beams) + (weight of 2(1/2) beams) + (wieght of slab and joists) =21.1k+ 31.8k + 38.745k =91.645k

Tables from CRSI 2002, Page 8-2 For all spans

Top Slab	Bars	Welded Wire F	abric***
(In.)	Grade 60	One Way**	Square
21/2	#3@12*	4 X 12-W2.1 X W1.4	6 X 6-W2.9 X W2.9
3	#3@15*	4 X 12-W2.1 X W1.4	6 X 6-W4 X W4
31/2	#3@17	4 X 12-W2.5 X W1.4	6 X 6-W4 X W4
4	#3@15	4 X 12-W3 X W2	4 X 4-W2.9 X W2.9
41/2	#3@12	4 X 12-W3.5 X W2	4 X 4-W3.5 X W3.5

* Maximum spacing permitted by ACI 7.12.2.2 (5 times slab thickness < 18 in.)

Larger diameter wires are to be placed normal to span of the

joists. *** Commonly available wire sizes.

For the 30'-9" span

Top Slab	Bars	Welded Wire I	abric***
(In.)	Grade 60	One Way**	Square
21/2	#3@12*	4 X 12-W2.1 X W1.4	6 X 6-W2.9 X W2.9
3	#3@15*	4 X 12-W2.1 X W1.4	6 X 6-W4 X W4
31/2	#3@17	4 X 12-W2.5 X W1.4	6 X 6-W4 X W4
4	#3@15	4 X 12-W3 X W2	4 X 4-W2.9 X W2.9
41⁄2	#3@12	4 X 12-W3.5 X W2	4 X 4-W3.5 X W3.5

* Maximum spacing permitted by ACI 7.12.2.2 (5 times slab thickness < 18 in.)

Larger diameter wires are to be placed normal to span of the joists.

** Commonly available wire sizes.

For the 18' span

T	op Slab	Bars	Welded Wire i	fabric***
11	(In.)	Grade 60	One Way**	Square
	21/2	#3@12*	4 X 12-W2.1 X W1.4	6 X 6-W2.9 X W2.9
	3	#3@15*	4 X 12-W2.1 X W1.4	6 X 6-W4 X W4
	31/2	#3@17	4 X 12-W2.5 X W1.4	6 X 6-W4 X W4
	4	#3@15	4 X 12-W3 X W2	4 X 4-W2.9 X W2.9
	41⁄2	#3@12	4 X 12-W3.5 X W2	4 X 4.W3.5 X W3.5

* Maximum spacing permitted by ACI 7.12.2.2 (5 times slab thickness < 18 in.)

Larger diameter wires are to be placed normal to span of the $\sim 10^{-1}$

joists. *** Commonly available wire sizes.

For the 15'-5" span

Top Slab	Bars	Welded Wire F	abric***
(In.)	Girade 60	One Way**	Square
21/2	#3@12*	4 X 12-W2.1 X W1.4	6 X 6-W2.9 X W2.9
3	#3@15*	4 X 12-W2.1 X W1.4	6 X 6-W4 X W4
31/2	#3@17	4 X 12-W2.5 X W1.4	6 X 6-W4 X W4
4	#3@15	4 X 12-W3 X W2	4 X 4-W2.9 X W2.9
41⁄2	#3@12	4 X 12-W3.5 X W2	4 X 4-W3.5 X W3.5

* Maximum spacing permitted by ACI 7.12.2.2 (5 times slab thick ness < 18 in.)

** Larger diameter wires are to be placed normal to span of the joists. *** Commonly available wire sizes.

For the 21' direction of the 30'-9" span

Table from CRSI 2002, Page 8-30 For the 30'-9" span

	Т		E	÷	Γ		=	: ;	9 9	8	ŝ	ŝ	5	9	5	8	č.	8	2	Ŧ	Τ			T									
sd 00		1	Spa (80		4.07	4.65		n 4	6.10	2.0	7.96	6.0	10.17	11.42	12.79	14.27	15.87	17.61	19.46		aus											
= 4,0		9 a * 0	9 # #	1.93	z	406*	485	441	401	366	321*	364	278	523	531 0	211	192	175	159 0	0 44 0		end sp				2.0	99	19.1	.277	1 04	15	19.1	0 1 27
れち		u0 ∰≉	9 9 * *	1.63	R SPA	391	354	0	0.00	290	263	238	215	°₹°	175	158	142 0	127	110	0 <u>0</u> 0	ends.	2 0	/360.			54.	ġ Ľ	19.2	.244	88	12	19.1	007
(PSF)	Depth	un u ≉⊧ d	n 19 19 19 19 19 19 19 19 19 19 19 19 19	1.36	VTERIC	313	281	0	0	122	203	182	163	1450	129	114	0 0	0 8 0	76	0 59 0	ad joist	8	$u = \ell_n$	(F) (4)		121	2.4	19.2	214	75	1	19.1	201
S OAD	Total [۵. *	. U U) + + +	16	=	236	010	0	0	164	100	127	Ē	0 16	- 8 ·	7	0 g	⊃ ĝ (0		tapere	1655 2	eflectio	CF/S		60. 8	8 9	19.2	191	63	9	19.2	201
sed L	0 = 20.5	4	4 10	32		20	480	0	00	20	20	80	67	- 13 0	0 10 0	-					specia	TURCK	astic d	TE .68	8	20 5	9 6	19.3	159	ŭ	6	19.2	17
ib @ 37 RIMPO	5 Top Slat	Fnd	Deft.	13 (E)		5.576	1.606		, noo 4	620.0	1.428	2.975	4.675	3.536	9.569	0.784	3.191	5.802	3.627	878.1	ad is for	SOREI RING	city at el	ONCRE									
SUPE	ib + 4.5	5		12		46*	4 0	0	000	20	£ go	20	2000	2 2	0 82 0	32	50 53 0	ы 19 19 19	55 99 O	0 % 0	cond lo	ve Loti	+Capa	N (C	-	5.0	33	9.2	44	8	11	9.1	2
orms +	Deep B	ф. 10	9 -	1	PAN	б б	ით ით	00	5 5 9 0 1	5 - 0	51 19 0	N N	~~~~	200	ين م م م	200	80	9 9 9 0	ວທ	0 4 0	8-1. nds; se	eu abo	- COLOR	DESIG		12	49	1	23	1	512	29	24
30" Fe	16.	-#≉ °	9 4 4	0 1.4	END S	5 28	9 25	0	3 8 0 10	8	90	92	200	200	=	7 2 2 2		200	9		e Table joist er	unbau		FOR [t g	1 9	5	10	8	10	- a	9 0
CTOR		** -	**	0 1.2		22		0		20	2	-	2	- 00	2 27 0	- œ	с. 				ies, sec square	e and t		RIES		2 2	1 22	3 19	90	5		5 20	2
EA		*	5 m m	1.0		11	- 4			=	8	00		- 25 -							propert	spans). spans).	apacity viloede	POPER		4 LL 1 LL	, 00 1 01	3 19	91.		10	2 19	
D STS ⁽¹⁾		***	2 * *	- NA		Ē	- 2		3 2 2	50		4									ection for sta	nterior u ferior : ferior :	shear c	P	E	2 0		19	14	9	; 9 ;	<u>6</u>	-
VIDAR V JOK		Size Size) \$ \$		SPAN	10	5	ē	5	5	ъ	ъ	ъ	ъ	ъ	ь	ъ	ъ	ъ	ъ	pross e load is	the for it	led by		MOMEN	NIFORM	LPERED	TH, IN,	RGR	AOMEN (SO, IN	8	TH, IN, ICB	2
STAI ONE-WA MULTIP		TOP	BOTTOM	Steel (psf)	CLEAR :	27'-	28'-	0C	102	NE	31-	32'-	33'-	34.	35'-	36'-	37'-	38.1	39.1	40'-	(1) For (1)		*Control		VEGATIVE N	STEEL APEA STEEL & 0.8		EFF. DEP	- ICR/	POSITIVE N TTEEL AREA	STEEL	EFE DEPT	TRUEL
				1																													
177 176			afi.			338	554	070	2 2	5	342	3	787	106	118	445	886	449	141	967							_						
a d			ភ័ពៈ	୍ଧ		3.6	ব	L.C.	ં હે	0	ö	2	80	6		N.	63	ശ്	- Pro-	ani i	Ι.	á											
4,000 ps 60,000 ps		# 0 #	0 10	10		68* 3.9	154* 346* 4.	123* 123*	195*	870* 0.U	89* 6.6	7.3* 7.7	228°	44* 9.	31* H.	19* 12	01 13	89 15.	72 17	0 57 18. 0	-	'ciipric n			22	121	73	19.1	.300	1.04	.15	19.1	2
$f_c = 4,000 \text{ ps}$ $f_y = 60,000 \text{ ps}$		#6 #6	# 9 # 9 # 9 #	70 2.01 (R SPAN	359* 368* 3.9	112 454* 338* 346* 4.	373 423* 5 318* 205* 5	339 395° °	307 370* 0.0	279 289* 6.6 0 347*	254 273* 7.7 0 322	230 258* 8.7	244* 9.	190 231* 11.	172 219* 12	0 226	140 189 15.	172 172 17	157 18 0 0 0	ands.		360.		22 1 14	121 66	60 73	19.1 19.1	260 .300	1.04	.13 .15	19.1 19.1	
PSF) $f_c = 4,000 \text{ ps}$	epth	¥5 #6 #6 9 11 0 Ir		42 1.70 2.01 6	TERIOR SPAN	331 359* 368* 3.9	0 412 454* 299 338* 346* 4.	0 373 423*	0 339 395* 0.	0 307 370* 0.0	218 279 289* 6.6 0 0 347*	97 254 273* 7.7 0 0 322	77 230 258* B.	59 209 244* 9.	42 190 231* 11.	27 172 219* 12	0 0 226 13 155 207 13	00 140 189 15.	88 126 172 17	0 0 0 77 113 157 18. 0 0 0	joist ands.		$u = \ell_n/360.$	(4)	92 1 44 1 20	85 99 121	51 .60 .73	19.2 19.1 19.1	234 .260 .300	.75 .88 1.04	.11 .13 .15	19.1 19.1 19.1 199 .230 .265	
$\begin{array}{c c} & f_{c} = 4,000 \text{ ps} \\ f_{f} = 60,000 \text{ ps} \\ f_{f} = 60,000 \text{ ps} \end{array}$	Total Depth	*5 #5 #6 #6		18 1.42 1.70 2.01 0	INTERIOR SPAN	52 331 359* 368* 3.9	0 0 412 454* 25 299 338* 346* 4.	0 0 373 423* 01 280 318* 325* 5	0 0 339 395* 51	0 0 307 370* 0.0	58 218 279 289* 6.6 0 0 0 347*	40 197 254 273* 7.7 0 0 0 322	24 177 230 258* 8.	09 159 209 244* 9.	95 142 190 231* 11.	82 127 172 219* 12	71 113 155 207 13	60 100 140 189 15.	50 88 126 172 17	0 0 0 0 0 0 41 77 113 157 18. 0 0 0 0	tapered joist ands.		flection = $\ell_n/360$.	CF/SF) ⁽⁴⁾	01 1 04 1 44 1 76	70 85 99 121	42 .51 .60 .73	9.2 19.2 19.1 19.1	201 .234 .260 .300	.62 .75 .88 1.04	.09 .11 .13 .15	9.2 19.1 19.1 19.1 168 199 230 265	
$\begin{array}{c c} c_{-}c_{-} & c_{2} \\ \hline f_{c} = 4,000 \text{ ps} \\ \hline f_{f} = 60,000 \text{ ps} \\ \end{array}$	= 20.5" Total Depth	4 #5 #5 #6 #6	4 半5 半5 半6 半6 半5	93 1.18 1.42 1.70 2.01 0	INTERIOR SPAN	84 252 331 359* 368* 3.9	0 0 1 0 412 454* 61 225 299 338* 346* 4.	0 0 0 373 423* 41 201 260 318* 325* 5	0 0 0 339 395* 51	0 0 0 307 370* 0.0	06 158 218 279 289* 6.6 0 0 0 0 347*	92 140 197 254 273* 7.7 0 0 0 0 322	78 124 177 230 258* 8.	66 109 159 209 244* 9.	54 95 142 190 231* 11.	44 82 127 172 219* 12	71 113 155 207 13	60 100 140 189 15.	50 88 126 172 17	0 0 0 0 0 0 0 41 77 113 157 18	special tapered joist ands.		istic deflection = $\ell_n/360$.	E .65 CF/SF) ⁽⁴⁾	9C 1 04 1 04 101 08	55 .70 .85 99 1.21	33 42 51 60 73	9.3 19.2 19.2 19.1 19.1	68 201 234 260 300	51 .62 .75 .88 1.04	07 .09 .11 .13 .15	9.2 19.2 19.1 19.1 19.1 140 .168 .199 .230 265	
a @ 36" cc. ⁽²⁾ $f_c = 4,000 \text{ ps}$ RIMPOSED LOAD (PSF) $f_f = 60,000 \text{ ps}$	Top Slab = 20.5 " Total Depth	#4 #5 #5 #6 #6 a 11 a 11 a	efi. #5 #5 #6 #6 @	31 .93 1.18 1.42 1.70 2.01 0	INTERIOR SPAN	398 184 252 331 359* 368* 3.9	400 161 225 299 338* 346* 4.	516 141 201 260 373 423* 5	752 123 178 242 200 339 3955 41	0 0 0 307 370*	119 106 158 218 279 289* 6.6 0 0 0 0 347*	625 92 140 197 254 273* 7.7 0 0 0 0 322	278 78 124 177 230 258* 8.	089 66 109 159 209 244* 9.	067 54 95 142 190 231* 11.	222 44 82 127 172 219* 12	565 0 0 0 0 226 71 113 155 207 13	105 60 100 140 189 15.	853 50 88 126 172 17	822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	id is for special tapered joist ands.		ity at elastic deflection = $\ell_{n}/360$.	NCRETE .65 CF/SF) ⁽⁴⁾	00 1 01 1 04 1 1 44 1 47 1 47 1 47 1 47	55 70 85 99 121	33 42 51 .60 .73	19.3 19.2 19.2 19.1 19.1	168 201 234 260 300	51 .62 .75 .88 1.04	.07 .09 .11 .13 .15	19.2 19.2 19.1 19.1 19.1 140 .168 .199 .230 245	
6" Rib @ 36" cc. ^{R2} SUPERIMPOSED LOAD (PSF) $f_{y} = 60,000 \text{ ps}$	b + 4.5° Top Slab = 20.5° Total Depth	6 #4 #5 #5 #6 #6 5 End a 11 a 11 a 11	7 Span #4 #5 #5 #6 #6 %	1 (3) 93 1.18 1.42 1.70 2.01 (INTERIOR SPAN	4* 6.398 184 252 331 359* 368* 3.9	3° 7.400 161 225 299 338* 346* 4.	8 0 0 0 373 423* 4* R516 141 201 260 318* 225* 5	6 0 0 0 339 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 3.122 123 178 243 300 307 370*	0* 11.119 106 158 218 279 289* 6.6 0 0 0 0 347*	5* 12.625 92 140 197 254 273* 7.7 7 0 0 0 0 322 7.7	5 14.278 78 124 177 230 258* 8.	5 16.089 66 109 159 209 244* 9.	7 18.067 54 95 142 190 231* 11.	20.222 44 82 127 172 219* 12	5 22.565 0 0 0 0 225 13 5 22.565 71 113 155 207 13	25.105 60 100 140 189 15.	8 27.853 50 88 126 172 17	6 30.822 41 77 113 157 18 0 0 0 0 0	and load is for special tapered joist ends.		-Capacity at elastic deflection = $\ell_{n}/360$.	V (CONCRETE .65 CF/SF) (4)	20 1 1 0 1 0 1 0 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	04 55 .70 85 99 121	33 .42 .51 .60 .73	19.3 19.2 19.2 19.1 19.1	39	20 51 62 .75 .88 1.04	7	02 140 168 199 199 290 265	
ms + 6" Rib @ 36" cc. ⁽²⁾ $f_c = 4,000 \text{ ps}$ ABLE SUPERIMPOSED LOAD (PSF) $f_F = 60,000 \text{ ps}$	Deep Rib + 4.5" Top Slab = 20.5" Total Depth	5 #G #4 #5 #5 #6 #6 105 End a 11 a 11 a 1	6 #7 Span #4 #5 #5 #6 #6 8 7 #7 Coat #45 #5 #6 #6 #7 D	4 1.71 (3) .93 1.18 1.42 1.70 2.01 (6)	PAN INTERIOR SPAN	5* 314* 6.398 184 252 331 359* 368* 3.9	5 293° 7.400 161 225 299 338* 346* 4.	0 33B 0 0 0 0 373 423* 7 274* B516 141 201 269 318* 325* 5	0 306 0 0 0 339 395 0 0 2 396 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	277 3.142 1.23 1.68 2.43 3.00 3.07 3.07 0.0	0 240* 11.119 106 158 218 279 289* 6.6 0 250 0 0 0 0 347*	9 226* 12.625 92 140 197 254 273* 7.7 0 227 0 0 0 0 322	2 205 14.278 78 124 177 230 258* 8.	1 185 16.089 66 109 159 209 244* 9.	167 18.067 54 95 142 190 231* 11.	150 20.222 44 82 127 172 219* 12	9 135 22.565 71 113 155 207 13	121 25.105 60 100 140 189 15.	5 108 27.853 50 88 126 172 17	5 96 30.822 41 77 113 157 18 0 0 0 0 0 0	3.1. dis: second load is for special tapered joist ands. distribution is for special tapered joist ands.	ends.	+Capacity at elastic deflection = $\ell_{0}/360$.	ESIGN (CONCRETE .65 CF/SF) ⁽⁴⁾	21 151 80 101 1 24 1 1 26	55 7.0 85 99 1.21	51 (53 33 42 51 60 73	2 19.1 19.3 19.2 19.2 19.1 19.1	34 269	1.20 51 .62 .75 .88 1.04	17	11 19.1 19.2 19.2 19.1 19.1 19.1 19.1 19	
30" Forms + 6" Rib @ 36" cc. ⁽²⁾ 50 USABLE SUPERIMPOSED LOAD (PSF) $f_y = 60,000 \text{ ps}$	16° Deep Rib + 4.5° Top Slab = 20.5° Total Depth	5 #5 #6 #4 #5 #5 #6 #6 5 9 105 End 9 11 9 11 0 1	3 歩6 学 7 Span #4 #5 #5 #6 第6 90 5 半7 半7 Conft #4 #5 #5 #6 第6 第6 90	4 1.44 1.71 (3) 93 1.18 1.42 1.70 2.01 (6)	END SPAN INTERIOR SPAN	305 314 6.398 184 252 331 359 368 3.9	7 5/00 5/3 1 275 293* 7.400 161 225 299 338* 346* 4.	0 0 338 0 0 0 0 373 423* 525 5	222 256 475 128 178 243 300 905 60	0 277 3.02 120 2.02 0.0 0 307 370*	0 200 240* 11.119 106 158 218 279 289* 6.6 0 0 250 0 347*	2 179 226* 12.625 92 140 197 254 273* 7.7 0 0 227 0 0 0 322	160 205 14.278 78 124 177 230 258* 8.	143 185 16.089 66 109 159 209 244* 9.	127 167 18.067 54 95 142 190 231* 11.	113 150 20.222 44 82 127 172 219* 12	9 135 22.565 71 113 155 207 13	87 121 25.105 60 100 140 189 15.	76 108 27.853 50 88 126 172 17	0 0	Table 8.1. toolst endes second load is for special tapered joist ends.	requires according to a province a contract of a province a contract of the second sec	+Capacity at elastic deflection = $\ell_{n}/360$.	FOR DESIGN (CONCRETE .65 CF/SF) ⁽⁴⁾	6 1 24 1 5 1 80 1 01 1 24 1 44 1 76	3 .85 1.04 .55 .70 .85 99 1.21	4 51 63 33 42 51 60 73	2 19.2 19.1 19.3 19.2 19.2 19.1 19.1	8 234 269 .168 201 234 260 300	8 1.04 1.20 .51 .62 .75 .88 1.04	3 15 17 .07 .09 .11 .13 .15	1 19.1 19.1 19.1 19.2 19.2 19.1 19.1 19.	
30° Forms + 6° Rib @ 36° cc. ⁽²⁾ STORED USABLE SUPERIMPOSED LOAD (PSF) $f_p = 60,000 \text{ ps}$	li6* Deep Rib + 4.5* Top Slab = 20.5* Total Depth	#5 #5 #6 #44 #5 #5 #6 #6 105 9 105 End 9 11 9 11 0 1	#6 분6 분7 Span #4 #5 #5 #6 #6 0 #66 #7 분7 Coeff #5 #5 #6 #6 0	1.24 1.44 1.71 (3) 93 1.18 1.42 1.70 2.01 (6)	END SPAN INTERIOR SPAN	240 305 314 6.398 184 252 331 359 368 3.9	214 275 293° 7.400 161 225 299 338° 346* 4.	0 0 338 0 347 274 8516 141 201 269 318 325 5	0 0 306 0 0 0 339 395 0 178 243 2004 2065 6	0 0 277 3.132 1.0 0 0 307 3.00 0.0	149 200 240* 11.119 106 158 218 279 289* 6.8 0 0 200 250 0 0 0 347*	132 179 226* 12.625 92 140 197 254 273* 7.7 0 0 2227 0 0 0 322	116 160 205 14.278 78 124 177 230 258* 8.	101 143 185 16.089 66 109 159 209 244* 9.	88 127 167 18.067 54 95 142 190 231* 11.	76 113 150 20.222 44 82 127 172 219* 12	0 0 0 0 226 0 9 135 22.565 71 113 155 207 13	54 87 121 25.105 60 100 140 189 15.	44 76 108 27.853 50 88 126 172 17	0 0	es, see Table 8.1. Hugare joist entries second load is for special tapered joist ends. Is not remained shows hordcoved is not Abrietween > 0.414 s. for ends.	ere not required accord interaction may projectives ± 10/110.0 for the plane.	+Capacity at elastic deflection = $\ell_n/360$.	TIES FOR DESIGN (CONCRETE .65 CF/SF) ⁽⁴⁾	0 106 124 151 80 101 124 144 176	7.3 .85 1.04 .55 .70 .85 99 1.21	7 .44 .51 .63 .33 .42 .51 .60 .73	3 19.2 19.2 19.1 19.3 19.2 19.2 19.1 19.1	4 208 234 269 .168 201 234 260 300	5 88 1.04 1.20 .51 .62 .75 .88 1.04	1 13 15 17 07 09 11 13 15	9 .230 .265 .302 .140 .168 .199 .230 245	
30" Forms + 6" Rib @ 36" cc. ⁽²⁾ FACTORED USABLE SUPERIMPOSED LOAD (PSF) $f_p = 60,000 \text{ ps}$	16° Deep Rib + 4.5° Top Slab = 20.5° Total Depth	박소 북동 북동 북6 #4 #5 #5 #6 #6 8 105 9 105 End 9 11 9 11 9 1	#5 #6 #6 #7 Span #4 #5 #5 #6 #6 Span #4 #5 #5 #6 #6 Span #4 #5 #5 #6 #6 #7 Deft #5 #5 #6 #6 #6 #7 D	1.04 1.24 1.44 1.71 (3) .93 1.18 1.42 1.70 2.01 (6)	END SPAN INTERIOR SPAN	185 240 305* 314* 6.398 184 252 331 359* 368* 3.5	U U 00 1412 454 454 454 161 225 299 338* 346* 4.	0 0 0 338 0 347 747 8516 141 201 269 318 225 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 277 371 279 0 0 0 0 307 370* 00	108 149 200 240* 11.119 106 158 218 279 289* 6.6 0 0 0 0 347*	93 132 179 226* 12.625 92 140 197 254 273* 7.7 0 0 0 2 227 0 0 0 322	73 116 160 205 14.278 78 124 177 230 258* 8.	0 10 143 185 16.089 66 109 159 209 244* 9.	55 88 127 167 18.087 54 95 142 190 231* 11.	45 76 113 150 20.222 44 82 127 172 219* 12	0 0 0 225 0 1 0 125 22.565 71 113 155 207 13	54 87 121 25.105 60 100 140 189 15.	44 76 108 27.853 50 88 126 172 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	roperties, see Table 8.1. natur square joist ends; second bad is for special tapered joist ands. Then to its and remined stress hordcond than Abdetances > 0.1/18.5. for and	paris). 20 Alista and tapened ands.	pacity. +Capacity at elastic deflection = $\ell_{\rm n}/360$.	OPERTIES FOR DESIGN (CONCRETE .65 CF/SF) ⁽⁴⁾	80 1.06 1.24 1.51 80 1.01 1.54 1.76	101 .73 .85 1.04 .55 .70 .85 .99 1.21	1 37 44 51 63 33 42 51 60 73	1 19.3 19.2 19.2 19.1 19.3 19.2 19.2 19.1 19.1	1 184 208 234 269 .168 201 234 260 300	2 75 88 1.04 1.20 51 .62 .75 .88 1.04	0 11 13 15 17 07 09 11 13 15	8 199 230 265 302 140 162 192 19.1 19.1 19.1 265 302 265 302 160 160 168 199 230 265	
$\begin{array}{c c} 0 \\ 30^{\circ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	16° Deep Rib + 4.5° Top Slab = 20.5° Total Depth	표그 판고 판5 판5 판6 표표4 #5 #5 #6 #6 #6 10 8 105 9 105 End 9 11 9 11 9 11 9 11 9 11	#5 #5 #6 #6 #7 Span #4 #5 #5 #6 #6 80 #5 #6 #6 #7 #7 Could #5 #5 #6 #6 #6 0	85 1.04 1.24 1.44 1.71 (3) 93 1.18 1.42 1.70 2.01 (END SPAN INTERIOR SPAN	131 185 240 305* 314* 6.398 184 252 331 359* 368* 3.5	112 163 214 275 293° 7.400 161 225 299 338* 346* 4.	0 0 0 0 338 0 0 347 774 8516 141 201 289 318* 255* 5	80 124 169 222 255 275 123 124 242 200 265 65		66 108 149 200 240* 11.119 106 158 218 279 289* 6.8 0 0 0 0 250 250 289* 6.8	54 33 132 179 228* 12.625 92 140 197 254 273* 7.7 0 0 0 0 0 227 0 0 0 0 322	43 73 116 160 205 14.278 78 124 177 230 268* 8.	06 101 143 185 16.009 66 109 159 209 244* 9.	55 88 127 167 18.087 54 95 142 190 231* 11.	45 76 113 150 20.222 44 82 127 172 219* 12	0 0 0 0 226 04 99 135 22.565 71 113 155 207 13	54 87 121 25.105 60 100 140 189 15.	44 76 108 27.853 50 88 126 172 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ction properties, see Table 8.1. for standard square josts ends, second load is for special tapered joist ends. tabler that the stan reveiued shows however the distributions > 0.7 to 5.5 for an and	terior spans). I bildvina kojsta and tapered enda.	hear capacity $+$ Capacity at elastic deflection = $\ell_n/360$.	PROPERTIES FOR DESIGN (CONCRETE .65 CF/SF) (4)	72 20 1.06 1.24 1.51 20 1.01 1.24 1.44 1.76	49 .61 .73 .85 1.04 .55 .70 .85 99 1.21	30 37 44 51 63 33 42 51 60 73	19.3 19.3 19.2 19.2 19.1 19.3 19.2 19.2 19.1 19.1	A54 184 208 234 269 .168 201 234 260 300	0 62 75 88 1.04 1.20 51 62 75 88 1.04	0.0 11 13 15 17 0.7 0.9 11 13 15	192 193 199 230 265 302 140 168 199 230 245	
VDARD 30' Forms + 6' Rib @ 36' cc. R) $f_c = 4,000 \text{ ps}$ Y JOISTS III FACTORED USABLE SUPERIMPOSED LOAD (PSF) $f_r = 60,000 \text{ ps}$	li6' Deep Rib + 4.5' Top Slab = 20.5' Total Depth	Size #4 #4 #5 #5 #6 #6 #4 #5 #5 #6 #6 #6	백 박동 북동 북6 북 북7 Span #4 #5 #5 #6 북6 월0 관 북5 북6 북6 북7 북7 Deft #5 #5 #6 북6 북1 0	85 1.04 1.24 1.44 1.71 (3) .93 1.18 1.42 1.70 2.01 (SPAN END SPAN INTERIOR SPAN	7 131 185 240 305° 314* 6.398 184 252 331 359* 368* 3.5	7 112 163 214 275 293° 7.400 161 225 299 338* 346* 4.	0 0 0 0 338 0 0 347 423* 141 201 260 313 423* 5	0 0 0 306 0 0 339 396 80 124 169 272 2456 123 123 304 366		0 66 103 149 200 240 ⁴ 11.119 106 158 218 279 289 ⁴ 6.6 0 0 0 0 0 347 ⁴	D 54 93 132 179 226* 12.625 92 140 197 254 273* 7.7 0 0 0 0 0 0 0 325 7.7	0 43 73 116 180 205 14.278 78 124 177 230 258* 8.	0 0 10 143 185 16.089 66 109 159 209 244* 9.	55 88 127 167 18.067 54 95 142 190 231× 11.	76 113 150 20.222 44 82 127 172 219* 12	0 0 0 0 0 0 0 226 0 1 113 155 207 13 04 99 135 222.565 71 113 155 207 13	54 87 121 25.105 60 100 140 189 15.	76 108 27.853 50 88 126 172 17	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ross section proparties, see Table 8.1. Totalis for standard square jointer ends: second load is for special tapered joist ends. Valoris of defension is not revening shows horizonal load (Astronome - A 1/18 5, for ends).	I for interior spans). sive of bridding kists and tapened ends.	ed by shear capacity $+$ Capacity at elastic deflection = $\ell_{\eta}/360$.	PROPERTIES FOR DESIGN (CONCRETE .65 CF/SF) ⁽⁴⁾	IONLEWT ISO NU 72 80 106 124 551 80 101 124 144 176	IFORU - 40 .61 .73 .85 1.04 .55 .70 .85 99 1.21	VEREDA 30 37 44 51 63 33 42 51 60 73	H IN 19.3 19.3 19.2 19.2 19.1 19.3 19.2 19.1 19.1	GR 154 184 208 234 269 168 201 234 260 300	(SO IN) 62 75 88 1.04 1.20 51 62 75 88 1.04	11 13 15 17 09 11 13 15 17 09 11 13 15	10.11 19.2 19.1 19.1 19.1 19.1 19.1 19.2 19.2	

8-30

CONCRETE REINFORCING STEEL INSTITUTE

Table from CRSI 2002, Page 8-14 For the 18' span

					Т	T	φ	-		-	E:	Ы	ŗ		n N	41	54	97	75	ç	90	45	144															
0 psi 0 psi			Int. Soan	Defi.	9		.20	76	ų l	ų	.44	55	00	ei la	5ć	- 0.	1.25	1.45	1.7	0	2.0	2.4	2.8		bâns,					200	2 4	0.0	0.5	4	2	ŝ	P	2
4,00		9#	10.5	n n # #	1.70	7	534*	*024	×00/	438* 641*	400*	367*	514	452	313	291*	271*	253*	280	250	222*	200	179	•	end sp				-	20		2 0	n R	32	9	64	6	2 2
ۍ چ =		بة 1	9.2	# 4	.33	A SPAN	523*	734	628	430*	3934	409 362*	409	358	309*	277	244	216	0 191	0	0	150	132	0	t ends. 3.5 for		n/360.			8,8	27.1	p 2	5	276	'n	Ņ	6	.24
SF)	pth	4		4 4	4	TERIO	514*	563	479	- C	353	306	0	90 O	231	, <u>15</u> (175	153 0	133	0	0	100	0 18 0	0	ed jois) = uo	SF) (4	LC	83	<u> </u>		8.8 000	230	40	1.	9.8	196
AD (F	Total De	4	22	6 4	79	Z	18	0 {	 20	0000	يور	218	0	187	90	137	5	- g	0 28	; 0	20	83	⊃ @ (0	al tape: mess 2		deflecti	2 CF/	i	<u>6</u>	9,1	10.0	8.6	.187	5	12	9.8	.156
CC.	. 11.0"	#		* ** のの	54		75 4	0	20 20	8	- 00	0 80	; 0	g 0	gg <	220	- <u>8</u>	0 (ş	0						r speck a (thick		elastic o	TE .4	1	6	8	4	8.8	160	66	60	9.8	.115
26" MPOS	p Slab -			**		_	34 2	-	6 	1 02	26	13	2	8	168	160	737	433	205	3	397	974	621		id is foi Mai line		ity at e	NCRE						1				
" Rib (3.0° To		3.0	Se et	3		63		4	ň	-		2	-			N N	й то то	0			ri m	4	_	ond los e horizo		Capac	N (CO	-	8	46	92	9.6	82	5	000	9.6	5
s + 6	+ di R	4	° 21	ω.α ‡⊧‡	1.46	z	476°	678	426 ³ 613 ³	384	348	317	54	356	268	247	275	243	215	5	190	4	- <u>22</u>		l-1. ds: sec d abovi	ands		ESIG		5		73	5	57	8	52 6	9.7	88
Form USAB	8" Dec	4	# 0 10.5	т 4 4 4	1.20	D SPA	462*	596	414	374*	340*	376	326	283	247	216	189	165	0.1	F 0	126	10	0 8	-	Table 8 oist en require	hered		ORD	-			8	6 0	173 0			5	6 ci
20° DRED		1	# 00 4 ℃	## 40	16.	EN	450*	477	4 4 0	344	295 C	0 92 263 0	0	218	188	o 83	0.6	0 [2	10	68 0	55	0.69	0	guare j is not	and to		TIES F	_	9	-	n U	6	0		2 40	0 00	6 2
FACTO			# 1	# 4 4 4	.76		360	30	302	255	215	0	0	155	131	° E	0 8	° F	0	5 0	250	4	0		opertie Idard s lection	xans).	g pacity.	OPER	L	4	r.,	4	6	81.		* -	: 0	10
8.00		:	# 4	# # 0.4	6		260	90	215	178	148	0 5	0 1	<u>5</u> 0	8	o	22 0	0 9	0						or stan	erior Sp	www.	PBR		-43	g	4	8.6 8	391.	č	<u> </u>	6	.15(
ARD OISTS SPAN		t	e g	**		z																			oss sec bad is f	for int	d by st		OMENT	(SQ. IN.)	IFORM)	ERED)	₩, IN	H	OMENT	zí SS ≫	H. IN.	GB
TIPL F		F		Z	0sf)	AR SPA	14'-0"	P 4	15 [.] 0"	16°-0°	17:-0*	0.0	180.	19'-0"	20'-0"	21-0	22'-0"	10,000		24'-0'	25'-0"	26'-0"	27'-0"		For gr	67/21	ontrolle		NTIVE M	AREA	37.56 (UN	(TAF	F. DEPT	- ICH/I	ITIVE M	L AHEA STEE	E DEPT	+ICR/I
S ONE-I		001	BARS	BOTTC	Steel (OLE																			586	3 3	€ů		NEQ	STEEL	STEE		Ш		POS	STEE	ü	
		-													_																							
							-						~	-	~	0		0	0	_	LO LO	0	5	-														
0 psi 0 psi	Τ		Int.	Span Defi.	100						198		.260	.337	.430	.540	671	000	<u>29</u>	1.001	1.205	1.440	1.707		900	(allo)												
4,000 psi 60,000 psi			Int.	Defi.	100		-				.198		.260	.337	.430	.540	671	000	070	1.001	1.205	1.440	1.707		and months													
$f_{\rm c}^{\rm c} = 4,000 \text{ psi}$ $f_{\rm u} = 60,000 \text{ psi}$			# 5 9 Int:	# 4 Span	(3) (3)	R SPAN					468*	715*	422*	383* .337	349* .430	495 540 320* 540	433 206+ 671	380	334 .043	253* 1.001	235* 1.205	262 1.440	232 2.707	206	t ends. E for and entre		/360.			86	1.53	16	9.7	300		Č,	17	.271
$f_c = 4,000 \text{ psi}$ PSF) $f_u = 60,000 \text{ psi}$. the	btu	¥5 #5 1.5 9 Int.	#4 #4 Span #4 #5 Deft.	11 1.39 (3)	TFRICK SPAN					454* 468* .198	593 715*	410* 422* .260 end 660*	373* 383* .337 494 ETD	341* 349* .430	375 495 540 313* 320* 540	325 433 325 433 325 433	0 380	248 2/3° 0 334 .053	217 253* 1.001	190 235* 1.205	0 262 1.440	0 232 1.707	0 206	ed joist ends.		$an = l_n/360.$	SF) (4)		67 86	1.20 1.53	16 17	9.7 9.7	253 300		.40 .51	70 21	222 .271
2) $f_c^2 = 4,000 \text{ psi}$ (PSF) $f_a^2 = 60,000 \text{ psi}$	Total Durath	iotal Depth	.4 #5 #5 0 11.5 9 Int.	13 #4 #4 Span	82 1.11 1.39 (3)	INTERIOR SPAN					454* 468* .198	0 593 715*	375 410* 422* .260	319 373* 383*	273 341× 349× .430	0 375 485 540 234 313* 320* 540	0 325 433 671	0 380	0 0 334	150 217 253* 1.001	129 190 235* 1.205	0 0 262 1.440	0 0 232 05 146 205* 1.707	0 0 206	al tapered joist ends.	$0.655 \leq \sqrt{h}/10.0$ 101 CHA aparto,	deflection = $\ell_n/360$.	0 CE/SE) (4)		50 .67 .86	88 1.20 1.53	52 71 91	9.8 9.7 9.7	205 253 300		.31 .40 .51	13 .10 .21 08 08 07	.176 .222 .271
$f_c = 4,000 \text{ psi}$ $f_c = 4,000 \text{ psi}$ $f_c = 60,000 \text{ psi}$	1 OF Tard Durch	= 11.0 ⁻ lotal Depth	4 #4 #5 #5 2 10 11.5 9 Int.	3 単3 単4 単4 Span 3 単4 単4 単5 Cont	R5 82 111 139 CUEIL	INTERIOR SPAN					003 447 458* 468* 198	0 0 593 715*	244 375 410* 422* .260	205 319 373* 383* .337	172 273 341* 349* .430	0 0 375 495 540 144 234 313* 320* 540	0 0 325 433		0 0 0 334 273	83 150 217 253* 1.001	68 129 190 235* 1.205	65 111 167 219* 1.440	0 0 232 44 05 146 205* 1.707	0 0 206	r special tapered joist ends.	E (Thickness ∠ V ₀ / 10.0 101 cm apana,	elastic deflection = $\ell_n/360$.	TF 40 CF/SF) (4)		42 50 67 86	74 88 1.20 1.53	44 52 71 91	9.8 9.7 9.7	179 205 253 300		22 31 40 51	017 01 01 01 00 00 00 00 00 00 00 00 00 00	130 176 222 271
@ 25" cc. (2) MPOSED LOAD (PSF) $f_{c} = 4,000$ psi	Part - 10 AV Total Durath	op Slab = 11.0° lotal Depth	#4 #4 #5 #5 d 12 10 11.5 9 Int.	an #3 #3 #4 #4 Span H. #3 #4 #4 #5 Codf	9ft. 6ft. 82 1.11 1.39 (3)	INTERIOR SPAN		22	173	330	101 203 447 454* 46B* .19B	0 0 593 715*	423 244 375 410* 422* .260	548 205 319 373* 383* .337	698 172 273 341* 349* .430	RTR 144 234 313* 320* 540	0 0 325 433		338 101 1/4 248 2/3	.626 83 150 217 253* 1.001	959 68 129 190 235* 1.205	340 55 111 167 219* 1.440	714 0 0 232 1.207	0 0 0 206	ad is for special tapered joist ends.	$Ongl line (interness \leq k_{0}/10.010 ion of the sparse$	city at elastic deflection = $\ell_n/360$.	NUCRETE 40 CE/SF) (4)		42 50 67 86	74 88 1.20 1.53	44 52 71 91	9.8 9.7 9.7	179 205 253 300		22 31 40 51	09 13 10 21	.130 .176 .222 .271
f_{c}^{*} Fib @ 25" cc. ⁽²⁾ $f_{c}^{*} = 4,000$ psi JPERIMPOSED LOAD (PSF) $f_{v}^{*} = 60,000$ psi	o an the state of the Daroch	+ 3.0° Top Slab = 11.0° lotal Lepth	#4 #4 #5 #5 #5 End 12 10 11.5 9 Int.	Span #3 #3 #4 #4 Span Deft. #3 #4 #4 #5 Conf.	Coeff. 25 1.11 1.39 (3)			.122	E71.	- 239	158 201 202 442 458* 468* 198	1 0 0 593 715°	1423 244 375 410* 422* .260	548 205 319 373* 383* .337 505 319 373* 383* .337	5 608 172 273 341* 349* .430	** 78 144 234 313* 320* 540	0 0 325 433 671		0* 1.338 101 1/4 248 2/3*	1* 1.626 83 150 217 253* 1.001	4 1.959 68 129 190 235* 1.205	0 0 0 262 0 1.440	2 2.340 0 0 0 232 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 2.1/4 44 33 140 206 1.00	cond load is for special tapered joist ends.	re horizonal line (thickness $\geq v_{\rm D}/$ 10.0 for end spans,	+Capacity at elastic deflection = $\ell_n/360$.	N (CONCRETE 40 CE/SE) (4)		00 42 50 67 86	79 74 88 1.20 1.53	06 44 52 71 91	9.6 9.8 9.7 9.7	179 205 253 300		75 22 31 40 51	.31 .09 .13 .10 .21	374
Is + 5" Rib @ 25" cc. ⁽²⁾ If $f_c = 4,000$ psi If F SUPERIMPOSED LOAD (PSF) $f_f = 60,000$ psi		ap Rib + 3.0° Top Slab = 11.0° lotal Ueptin	#6 #4 #4 #5 #5 Int.	#5 Span #3 #3 #4 #4 Span #61 #3 #4 #4 Bell #61 #3 #4 #4 #5 Dell	1 c.1 (3) BF 82 1.11 1.39 (3)			.122	570* .173	820* 495* 239	723* 201 202 442 454* 468* .138	646* 0 0 593 715*	* 388* .423 244 375 410* 422* .260	3373 383 337 337 337 337 337 337 337 337	* 315* .698 172 273 341* 349* .430	▲ 484* ▲ 684* ★ 0 855 ▲ 485 ■ 144 234 313* 320* 540	430 0 0 325 433 67	378 0 0 0 380 000	17 240° 1.338 101 1/4 248 2/3°	1* 221* 1.626 83 150 217 253* 1.001	2 234 0 0 0 235 1.205 1 204 1.959 68 129 190 235* 1.205	1 260 0 0 0 262 1.440	231 232 0 0 0 232 231 237 0 0 0 232	7 205 2.1/4 44 33 140 206 1.10	 B.1. classification of the special tapered joist ends. classification of the special tapered joist ends. 	od above borizonal kne (thiokness $\ge \eta_0/10.0$ for a for each spane,	ends. +Capacity at elastic deflection = $\ell_p/360$.	VESICN (CONCRETE 40 CE/SE) (4)		77 1 00 42 50 67 86	38 1.70 7.4 88 1.20 1.53	80 1 08 44 52 71 91	37 9.6 9.8 9.7 9.7	70 328 179 205 253 300		62 .75 .22 .31 .40 .51	26 .31 .09 .13 .10 .21	22 374
"Forms + 5" Rib @ 25" co. (2) I.ISARI F SUPERIMPOSED LOAD (PSF) $f_{i}^{c} = 4,000$ psi	and the second	8° Deep Rib + 3.0° Top Slab = 11.0° total Depth	#5 #6 #4 #4 #5 #5 10.	************************************	1 25 1 54 R5 82 1 11 1 39 (3)			623*	540* 570* .173	791* 820* 471* 495* 239	700° 723° 198 442 454° 468°	627 646* 00 0 593 715*	372* 388* .423 244 375 410* 422* .260	7 335 346° .548 205 319 373 383* .337	460 529* 698 172 273 341* 349* 430	308 484* 0 0 375 495 540 375 495 540	346 430 0 0 325 433 671	253 201 1.090 121 202 0 0 380 000	233" 240" 1.338 101 1/4 248 2/3"	214" 221" 1.626 83 150 217 253" 1.001	232 234 0 0 0 235 1.205 198* 204* 1.959 68 129 190 235* 1.205	204 260 0 0 0 262 1.440	0 231 231 0 0 0 232	0 205 2.774 44 30 40 206	Table 8.1. joist ends: second load is for special tapered joist ends.	required above horizonal line (inconess $z v_{\rm B}/$ 10.0 for the spare,	apered ends. +Capacity at elastic deflection = $\ell_{ m D}/360$.	EOB DESIGN (CONCRETE 40 CE/SE) (4)		x 77 1.00 42 50 67 86	0 1 3B 1 70 74 88 1.20 1.53	ac 80 1.06 .44 .52 .71 .91	07 96 98 9.7 9.7	10 3.1 3.0 179 270 308 179 205 253 300	222	51 . 62 . 75 . 22 . 31 . 40 . 51	21 26 .31 .09 .13 .10 .21	71 322 374
$\begin{array}{c c} 20^{\circ} \mbox{ Forms } + 5^{\circ} \mbox{ Rib} (\underline{0} \ 25^{\circ} \ c. c. \ 29 \ f_{c} = 4,000 \ psi \\ 0.06 \ Dsi \ f_{c} = 60,000 \ psi \\ f_{c} = 60,000 \ psi \end{array}$	A Development of the second seco	8° Deep Rib + 3.0° Top Slab = 11.0° Iotal Leptin	#4 #5 #6 #4 #4 #5 #5]0 a 10 11 End 12 10 115 9 Int.	4 4 4 5 Span #3 #3 #4 #4 Span #3 #4 #4 Deft	1 2 2 2 Coeff. 2 Coeff. 2 Coeff. 2 2 1 1 1 2 2 (3)		END SPAN	597* 523* .122 ese 200*	521* 540* 570* .173	716 7911 820° 456° 471° 495° 239	597 700* 723* 201 700* 723* 321 203 442 454* 468* 198	403 627 646* 00 0 593 715 ⁴	363* 372* 388* .423 244 375 410* 422* .260	428 535 348° 548 205 319 373* 383* .337	366 460 529* 698 172 273 349* 349* 430	314 306 481* 0 0 375 485 540 540 551 540	0 346 430 0 0 325 433 671		204 233* 240* 1.338 101 1/4 248 2/3*	177 214* 221* 1.626 83 150 217 253* 1.001	0 232 234 1.959 68 129 190 235* 1.205	0 204 260 0 0 262 1.440	0 0 231 100 231 00 0 0 232 0 0 231 0 231 0 0 0 0 232	0 0 205 2.774 44 30 40 206	es, see Table 8-1. quare joist ends, second load is for special tepered joist ends.	is not required above horizonal line (thickness $z v_{\rm B}/10.0$ for this spane,	s and tapered ends. +Capacity at elastic deflection = $\ell_n/360$.	THES FOR DESIGN (CONCRETE 40 CF/SF) (4)		a a 27 1.00 42 50 67 .86	74 88 1.20 1.53	0 55 80 1.06 44 52 71 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	179 205 253 300		t0 .51 .62 .75 .22 .31 .40 .51	16 21 26 31 .09 13 .10 21	22 271 322 374 130 176 222 271
20" Forms + 5" Rib @ 25" cc. ⁽²⁾ FACTORFD USARI F SUPERIMPOSED LOAD (PSF) $f_{f} = 60,000$ psi	and the second sec	8° Deap Rib + 3.0° Top Slab = 11.0° total Leptin	#4 #4 #5 #6 #4 #4 #4 #5 #5 e 10 11 End 12 10 115 9 Int.	100 월 10 10 10 10 10 10 10 10 10 10 10 10 10		12 1.01 1.23 1.34 (3)	END SPAN	567* 597* 523* .122	496' 521' 540' 570' .173	550 716 791* 820* 447* 471* 495* 239	456 597 700* 723* 201 962 442 454* 468* 198	0 503 627 646"	321 363* 372* 388* .423 244 375 410* 422* .260	272 327* 335* 345* .548 205 319 373* 383* .337	0 366 460 529* 698 172 273 341* 349* 430	0 314 308 484* 0 0 375 485 540 107 731 378 985* 378 144 234 313* 320* 540	0 0 346 430 0 0 0 325 433 671		144 204 233* 240* 1.338 101 174 248 273 0 0 264 333 0 0 0 334	123 177 214* 221* 1.626 83 150 217 253* 1.001	0 0 232 294 0 0 232 294 1059 0 0 235 1.205 104 154 198 ² 204 ² 1.959 68 129 190 235 ² 1.205	0 0 204 260 0 0 262 1.11 167 219* 1.440	0 0 0 231 10 10 231 2340 0 0 232 232 1707	74 116 158 175 2.774 44 33 49 205 1.10	roperties, see Table 8-1. ridard square joist ends, second load is for special tapered joist ends.	flection is not required above borizonal line (thickness $z \eta_0$ to 3 tor and spans), pans).	ig joists and tapered ends. +Capacity at elastic deflection = $\ell_{\rm p}/360$.	ODEDITES FOR DESIGN (CONCRETE 40 CE/SE) (4)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a 1 10 138 179 74 88 1.20 1.53	ED ED 106 44 52 71 91	2 02 02 07 96 9.8 9.7 9.7	0 3.0 3.0 3.1 3.0 1 2.0 1 2.0 2.0 3.00	2007 - 214- DET- 021-	1 40 51 62 75 22 31 40 51	2 16 21 26 31 .09 13 .10 .21	8 9.6 9.7 3.7 9.7 9.0 9.0 9.0 9.0 9.0 0.1 176 222 271
$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		8° Deep Hib + 3.0° Top Slab = 11.0° Total Leptin	과의 규칙 #4 #5 #6 #4 #4 #5 #5 #5 Int.	12 1/2 1/2 1/2 1/2 1/2 1/2 2/2 2/2 2/2 2	72 70 101 151 66 66 65 62 111 139 (3)	20 /2 1.01 1.21 1.21 (2)	END SPAN	502 567* 527* 523* .122	409 496* 521* 540* 570* .173	0 550 716 791* 820* 336 437* 471* 405* 239	0 456 597 7007 723 0 456 597 7007 723 0 454* 468*	2/8 381 405 417 430 .341 430 .341 430 0 0 593 7154	231 321 363 372* 388* .423 244 375 410* 422* .260	0 0 428 535 548 .548 205 319 337 383 .337	0 0 0 000 000 529* 698 172 273 341* 349* 430 430	0 21 202 485 797 705 797 707 70 0 375 485 540			93 144 204 233" 240" 1.338 101 174 248 273" .020 0 0 0 264 333 0 0 0 334	77 123 177 214* 221* 1.626 83 150 217 253* 1.001	0 0 0 232 234 0 0 232 234 0 0 235 234 0 0 235 136 129 190 235 ⁶ 1.205	0 0 0 204 260 0 0 0 262 1.440		74 116 158 175 2.7/4 44 30 140 206 1.10	ction properties, see Table 8-1. for standard square joist ends, second load is for special tapered joist ends.	n of deflection is not required above horizonal line (thickness \mathcal{L}_{n} / 10.0 for and spane), verior spane).	bridging joists and tapered ends. +Capacity at elastic deflection = $\ell_{\rm D}/360$.	PROPERTIES FOR DESIGN (CONCRETE 40 CF/SF) (4)		42 50 57 867 86	74 at 1.20 1.53	21 50 55 50 1.06 44 52 71 91	22 02 02 04 07 96 9.8 9.7 9.7	170 100 044 070 308 179 205 253 300		0 .31 .40 .51 .62 .75 .22 .31 .40 .51	13 16 21 26 31 .09 13 12 21 21 20 12 13 10 21 21 21 21 21 21 21 21 21 21 21 21 21	9.8 9.4 9.7 9.7 9.7 9.0 9.0 9.0 9.0 9.0 9.0 0.1 176 222 271 322 374 .130 .176 .222 .271
(ARD 20" forms + 5" Rib @ 25" cc. ⁽²⁾ $f_c = 4,000$ psi (OISTS ⁽¹⁾ FACTORED LISARI E SUPERIMPOSED LOAD (PSF) $f_c = 60,000$ psi	SPANS	8" Deap Rib + 3.0" Top Slab = 11.0" lotal Lepth	Size #4 #4 #5 #6 #4 #4 #5 #5 m6 17 0 15 9 nf.	(1) 12 103 世 10 10 10 10 10 10 10 10 10 10 10 10 10	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 111 139 (3)	0.0 /2 1.01 1.02 1.03 1.04 00 00 00 00 00 00 00 00 00 00 00 00 0	AN END SPAN	502 567* 557* 623* .122	409 496* 521* 540* 570* .173	0 550 716 7911 820" 246 4377 466 4711 495" 239	0 456 597 7007 723* 201 202 442 468* 198	278 381 400 417 400 346 0 593 715 0	231 321 363 372* 388* .423 244 375 410* 422* .260	193 272 327 335 348 548 205 319 373 383* .337	0 0 366 460 528* 0 0 0 444 376 181 931 203* 304* 375* 698 172 273 349* 349* 430	0 214 200 401 10 0 375 495 540 10 0 236 495 540 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			93 144 204 233* 240* 1.338 101 174 248 273 0 0 0 264 333 0.0 0 0 334	77 123 177 214* 221* 1.626 83 150 217 253* 1.001	0 0 0 232 294 0 0 232 294 0 0 0 235 294 0 0 0 235 190 235 ⁶ 1.205	0 0 0 204 260 0 0 262 1.11 167 219* 1.440		74 116 158 175 2.1/4 44 30 140 206 1.10	ross section properties, see Table 8-1. bad is for standard square joist ends, second load is for special tapered joist ends.	nutation of deflection is not required above horizonal line (Innoviness z V _n / 10.3 101 enu spano). 1 for interior spans).	sive of bridging joists and tapered ends. +Capacity at elastic deflection = $\ell_{\rm o}/360$.	PROPERTIES FOR DESIGN (CONCRETE 40 CE/SF) (4)		AGALENI 20 40 40 40 50 50 67 86	(20) 110 120 120 120 153	arciara 114 .04 1.10 1.50 1.50 1.50 1.61 .52 .71 .91	PEREUS 74 30 32 36 9.8 9.7 9.7	11. 11. 3.0 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	001 113 130	(30, htt) .31 .40 .51 .62 .75 .22 .31 .40 .51	.s. 13 16 21 26 31 .09 13 10 21	TH HL 9.8 9.6 9.7 9.7 9.7 9.7 9.0 3.0 3.0 3.0 3.0 3.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
TANDARD 20" Forms + 5" Rib @ 25" cc. ⁽²⁾ WAY JOISTS ⁽¹⁾ FACTORED USARI F SUPERIMPOSED LOAD (PSF) $f_{ij} = 60,000$ psi	Tiple SPANS	8 Deep Rib + 30 fop Slab = 11.0 loal Depth	Size #4 #4 #5 #6 #4 #5 #6 #4 #4 #5 #5 Int.	2014 年 年3 年5 100 日 10	Coeff. 25 111 139 Coeff. 25 82 111 139 (3)		AR SPAN	11'.0' 502 567* 523* .122 	12'0' 400 496' 521' 540' 570' 173	0 550 716 791* 820* see 447* 456* 471* 495* 239	0 456 547 700 723 0 456 547 700 723 0 456 547 700 723 0 155 170 700 723 0 155 100 723 0 155 100 723 0 155 100 723 0 155 100 723 0 156 100 720 723 0 156 100 756 100 723 0 156 100 756 100 723 0 156 100 756 100 756 100 757 0 156 100 756 1000 756 1000 756 1000 756 1000 756 1000 756 1000 75	14-0 278 381 405 417 430 .341 233 715 2	is-0 231 321 363* 372* 388* .423 244 375 410* 422* .260	16.0' 193 272 327* 335* 348* .548 205 319 373* 383* .337		10 10 20 214 308 404 7 0 375 485 540			20'U' 93 144 204 233" 240" 1.338 101 174 248 273" .050 0 0 0 264 333 0 0 0 334	21.0 77 123 177 214" 221" 1.626 83 150 217 253" 1.001	22.0° 62 104 154 198* 204° 1.959 68 129 190 235° 1.205	0 0 0 204 260 0 0 0 262 1.440		24.0° 74 116 158 175° 2.1/4 44 33 140 205	For gross section properties, see Table 8.1. First haad is for standard square joist ends: second load is for special tapered joist ends.	Computation of deflection is not required above horizonal line (thickness $z v_{\rm B}/$ to 2 for sine spars, $l_{\rm a}/21$ for interior spans).	Evolutive of bridging joists and tapered ends. +Capacity at elastic deflection = $\ell_p/360$.	PRODEDTES FOR DESIGN (CONCRETE AD CE/SE) (4)		ATIVE INDURENT	Later advince 74 24 10 153	CL 5 (INTRUMARE . 14 . 64 . 60 . 66 . 80 1 06 . 44 . 52 . 71 . 91	(Laternel) 44 30 35 95 96 9.8 9.7 9.7	- DEFIL, M. 3.6 3.0 3.0 3.1 3.1 3.0 1 3.1 3.0 1 1 3.2 3.30	- ICH MAIL - 1/2 - 1/20 - 2/2	31, 2016 3 (30, 110) 31 (40) (51 (62) 75 (22) 31 (40) 51	Steel Steel 31 .09 .13 .16 .21 .26 .31 .09 .13 .10 .21	FF DEPTH INC 918 9.4 9.4 9.4 9.4 9.0 9.6 9.6 9.0 9.7 9.7 0.771

5

CONCRETE REINFORCING STEEL INSTITUTE

Table from CRSI 2002, Page 8-14 For the 15'-5" span

STAN	DARD	10		20" [orms	+ 2"	Rib @ 2	25" cc	8		fe	= 4,000 p		STANDP ONE-WAY JC	VRD DISTS ⁽¹	2	2	0° For	ns + 6 bi F St	" Rib @	26° c	C. (2)	(PSF)	f:= f	4,000) psi
MULTIPLE	E SPAN	<u>س</u> ص	ACTO	REDU	JSABL	ESUF	ERIMP	OSED	LOAD	(FSF)	ŗ,	= 60,000	10	MULTIPLE	SPANS	ž										
					3" Deap	Rib + 3	0' Top SI	lab = 11.	0" Total	Depth						-		8	sep Rib 4	3.0° Top :	Slab = 1	.0. lotal	neptu		9 2	
TOP	Size	प क	4	4	۰۵ #	9 *	End	# 4	# 4	9 ₩	ۍ # ۵			TOP S BARS (äe ∺ 7	4 ~	4 # 8.5	# 5 10.5	#e	End	# ⁴	# 4 10.5	8 4	6 G 6 G	10.5	Int.
BOTTOM	5j #r	#3	n +	x 7 **	2 \$2	- 10 #	Span Defi	2 ⁰ #	2 m -	* * °	* *	ಹರ	pan efi.	BOTTOM	* *	₩ #	# #	**	u∩ 00 *k *k	Deft.	(1) (1) 神 神	# # で す	* # 4 4	# # 4 13	¢ په ۱	Defi.
BARS	-18 <u>5</u>	74	प क	сл 1b	10 11	0 #	Coeff.	m #	# 7 8	7 H	084		Seff.	Steel (psf)			16. 5	1.20	1.46	(3) (5)	.64	-79	1.04	1.33	1.70	6
Steel (psf)		.63	67.	101	1.25	1.54	<u>@</u>	£9.	32		RC 1			CIEVE CDA	7		-	ND SP	-NA				INTERIC	DR SPA	z	
CLEAR SI	NAN			CN3	SPAN					INTERN	AS HO	NT	T	OLEAN OF	2	00 02	450	* 465	< 476 ⁴	* 334	275	418	514*	523*	534*	.206
.0.,11		502	567*	597*	623*		.122							14'-0"	50	20	477	236	678	*	20	2	563	734	170*	120
12'-0'		0 0 <u>1</u>	0/0 496'	5217	540-	570*	.173							15'-0"	2	15 30	40	508	+ 426 613	* 440	228	20 20 20	405	628	700x	1
- - - -		0 925	550	716	, 162 , 12P	820°	239							16'-0'	-	78 25	344	374	* 384	* 570	89	289	5 5 6	430*	438*	351
0-0- 14-0	_	5280	456 3B1	597 405 -	7007	723* 436*	.321	293	442	454*	468*		.198	17:-0*	-	0 48 21 0	0 296	340	* 348 467	* .72£	- <u>8</u> 0	2555	353	393 [±]	400*	.447
15-0	~	231	321	363×	372* 572* 635	388° 583°	.423	244	375	410* 506	422*		.260	18'-0'	-	52 0	0 22	31 31	* 317	16	131	218	306	409 409	514 514	200.
16-0		193	272	327*	335*	348*	.548	205	319	373*	383		.337	19'-0"		10 C	510	800	356		- O	18	0	358	452	2007
c i	-	0	0331	366	304*	529* 315*	698	120	273	434 341 *	349*		430	20'-0"		-8°	18	24	268	1.39	68 0	160	231	309* 314	313* 399	.856
2 9		0	305	314	388	484*	878	0	234	375	495 320*		540	21-0		0 80	16	3 21	541	1.69	- 12 0	137	20	277	291* 354	1.041
7.2		200	200	0.0	346	430		05	00	325	433		671	22'-0"		22 0	0 14	18	272	3* 2.03	280	5	175	244	271*	1.254
19.19		20	20 20	0 7	302	378	000.1	10	0	0	380		0000	10 100		0 0	2 2 2	0 -	24	3 2.43	0 49 79	- 8 	25	216	253*	1.497
20.0	1.	8	₹°	204	233*	240	1.338	<u>5</u> 0	174	248	273		279	0-07		20	0	0	12	10	-	0.8	0 6	0 į	280 236*	1 775
21.0		2	123	12	514-	221*	1.626	8	150	217	253	*	1.001	24'-0°			04	4 0	4 C	2.00	2	50	30	20	520	
22.7		0 8	°₹	154 0	232 198×	204	1.959	0 89	129	0.06	235	*	1.205	25'-0"			8 25 25	00	900	3.39	2	20	116	169	222* 224	2.090
		٥	0 5	0	204	260	0.240	o y	°	167	262		1.440	26-0*			4	ي ت	,0 4	9 3.97	4	83	9 0	150	200	2.445
	5	30	000	30	20	231	10.9	30;	- 1	2	232		202.1	"U":26			0	0 0 0	50	2 4.62	12	- 8 2 6	0 87	132	179	2.844
	.0		20	910	28	175, 205	2.774	40	g 0	9	8 8 8 8		1.707	n- 17	_	_	_	0	0	0		-	-	0	0	
500 12 12 12 12 12 12 12 12 12 12 12 12 12	gross sex load is f putation	ction pro for stand	perties fard sq sction is	s, see Te uare joi: s not re	able 8-1 st ends: quired a	1. secor above 1	vd load is horizonal	for spé line (th	scial tap tickness	i≥ ℓn/i	ist end. 18.5 fo	8. Jr end span	ú	(1) For grk (2) First lo (3) Compt.	ad is for utation of for interi	on propt standar f deflect or spans	d square of square ion is no	se Table a joist e it requir	8-1. nds: sec ed abov	cond load e horizona	is for sp ai line (ti	ecial tap hickness	oered joi s ≥ l _a /1	ist ends 18.5 for	r end sp	ans,
1000 (€)	21 for int usive of i	lerior spi bridging	ana). joists i seltv	and tap	ered en	nds. +C	anacity a	at elast	ic deflec	ation =	l/36(, G		(4) Exclus *Controllec	ive of br I by shei	idging jo	ists and ity.	taperer	i ends.	+ Capacity	y at elas	tic defle	ction =	l _n /360		
2000	ico no a	DDD	VDERT	JE O EL	NR DF	SICN	CONC	BFTE	40 CF	(JSF)	(4)					PROP	ERTIES	FOR	DESIG	N (CON	CRETE	.42 CF	-/SF) ((4)		
NEPC ATIVE	ANDA IFAIT													NEGATIVE MC	DMENT		-	3	F	ž					1 00	
STEEL ARE?	NI (SQ. INI)	4	48.	.63	11.	1.00	-	4	01 i	99	ai u	9		STEEL AREA (SQ. NJ	-43 RF	4	5.6	16 1.	46		2 18	5 G	8 1.2	99.1	
STEEL 5. (L	E-POHN	4	5 i	21	1.38	1.7			т т т	80	0 - 	2 =		(TAP.	ERED)	4	45	83	.73	92		4.	.9	80	10	
(1) CEC 2/CD	APERED) 2014 al	4 a	0, 0 0, 0 0, 0	8 8	26	5.6		ಕಡ	? 66 ? t 09	- co - co	: 6 - 1-			EFF. DEPTH	ž,	9.8	9.8	9.8	9.7	9.6	сл ;	8 0	8 6	66	200	
101	in Film	6/1	861	243	279	328		.17	9 .20	5 .25	50	8		- ICR/IC	H.	169	180	220	7 192	CR	-	2	5	-	-	
POSITIVE	A KOMENT	2		ŭ	ŝ	ŕ		-	5 M	4		21		STEEL AREA (SQ. INJ	Ę,	.40	51	.62	75		22	4	5.0		~
STELECTION STELECTION	a laguna	22	91. 91.	2 64	28	1 10)	. 9	6	5	0	21		STEEL	% %	12	91.	2 5	.25	30		80 8	. o	9 0 0 0	0 10	0.0
EFF. DEI	PTH. INL	9.8	9.6	1.6	9.7	9.6	9	ത്	8. 17.9	8 9	8.2	12		FFE DEPTI +ICR/IC	ź s	156	196	240	285	331		5 11 11	99	6 .24	0 28	
177	in the second	2	1	-	5						_		-							-		-	-			

\$

8-14

CONCRETE REINFORCING STEEL INSTITUTE

Table from CRSI 2002, Page 8-14 For the 21' span of the 30'-9" bay

CTANDADD	-		and the second second										STANDA	RD		ñ	0° Eorr	9 + su	" Bib @	26" c	C. [3]		Ĵ	= 4,00) psi
ONE-WAY JOISTS	E ,	CTOF	3ED US	orms + SABLE	SUPEF	RIMPO	SED L		SF)	$f_{y} = 6$	t, uuu psi 0,000 psi	Z V	E-WAY JC	DISTS (EAC	TORE	NUSA N	BLESI	UPERIM	POSED	LOAD	(PSF)	fy =	= 60,00	0 psi
MULTIPLE SPAIN:					1001	ā	10.61	01717	- the								8, D	tep Rib ∉	+ 3.0" Top	Slab = 11	.0" Total	Depth			
		a constitue of the second	20	Deap Hil	0.5 + 0.0	Fop Slat	0.11 = 0	101311	-	$\left \right $		i ce	Ċ	-			4	3 #		μ. Δ	4 #	#4	цо Ф	9#	
OP Size 4	3k 9	जा रह म	4 a	# 2 #	ш 	put	# 7 12	# 4 10	¥ 5 1.5 #	۰ ۵	int.	BAR	s S	26 17	4 ~	₩ 80 4 7.5	# 0	12	End	i 2	10.5	8	9.2	10.5	Int. Span
MOTTON #	2 1k -	-7	4 1	11= 1	00	pan Mafi	(C) (C) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H	4 10 10 10	# 4 # 4	4 0	Delli (BOT	S	**	() 4 # #	# # 4 D	# #	10 (D # #	Deft.	う c7 キ 非	# # で マ	* * 4 4	## 7 4	¢.≇	Defi. Coeff.
a cura	+	T		2 H	0	Seff.	RF F	8	=	8	(3) III	Stee	i (psf)	-	12.	16. 5	1.20	1.46	3	.64	79	1.04	1.33	1.70	6
pteel (pst)	20.	2	10	1 67	5	2	3		TERIOR	SPAN		0	EAR SPAI	z		ľ	ND SP	AN				INTERI	OR SPA	z	
CLEAR SPAN			ENE	SPAN		-		-				j	1 11 10	6	30 QRI	450	* 462	* 476	. 33	1 275	418	514*	523*	534*	.206
11.0.	502 50	- 10 - 10	597* B	\$23*		122							- + -	9	30	44	596	678	*	0 00	0 %	563	734	770*	271
12.0	4 601	10	5217 5	19	-02	.173							15'-0"		5 0 20	40 40 40	508	613		0	20	479	628	×00/	ļ
-0-2	336 4	37	716 1	11.1	52-	.239							16'-0'	-	78 25	344	374	* 384	* 27	80	289	610	430°	438" 641 ⁴	Ŗ
	2280	81	405~ 4	7007 7	23*	321	293	442	454*	.68*	.198		17'-0*	-	48 21	296	340	348	* .72	. 8 . 8 . 8	255	353	393 ⁺	400*	.447
5		0	503 E	327 6	16*	001	0 440	375	593 7	15*	260		18'-0'	-	22 18	253	55	* 317	16	3 131	218	306	362*	367*	,562
	231	- 0	428	232 - 272	83*	C7 1	f ° 1	208	200	350°	122		19'.0"		0 15	5 218	326	0 4 0	* 1.13	3 109	187	265	334*	339,	769.
16'-0'	193	512	327"	335° 3 460 5	292	548	90Z	20	434	01/2	202		2		0			356		08	180	0156	358	452	.856
12. 0.	161 2	231	297	304* 3	315*	698	172	273	341*	349* IOF	.430		20'-0"		0 13	20	2	313		80 	20	3	314	399	
18:-0'	0 19	•5	314	398 4 277* 2	286*	878	144	234	313.	320*	.540		21-0		98	10	516	241	7* 1.69	1 23	137	5°	277	354 *	1.041
20 O	0	0 0	0 350	346 4	430	1 090	0 121	0 0	325	433	.671		22'-0"		52 6	50 4	<u>8</u>	121	3* 2.03	289	11	175	244	271* 315	1.254
0.61	4 0	30	30	38	378		0	0	0 00	380	808		23:-0"		0 9	12		212	3* 2.43	46	8	153	216	253*	1.497
20' Ŭ	9 C	<u>4</u> 0	204	2337 2	240-	900	20	10	0	334			10 10 10		0	0 5	0 4	211	5 2.86		0 8	133 0	191	236	1.775
21.0	5	123	121	2147	221*	1.626	8 o	150	212	295	100.1		0- 62					0	0	5	0 0	0 4	0 0	250	2.090
22' 0'	9.6	2	22	198-	204	1.959	89	129	190	235*	1.205		25'-0"			8 20 20	50	00	2 2 2 2		20	0	201	224	
23.0.	0 3	- 8	133 0	179	183*	2.340	22	Ξ	167	219*	1.440		26'-0"			- = -	5 C	5	6.6	4		20	20	002	C644-7
24:0"	Ċ	07	0 116	0 83	231 175*	2.774	040	ဓမ္မရ	146 0	232 205*	1.707		27'-0"				0 000	13	2 4.6	12	8 O	60	132	179	2.844
(1) For aross sect	Ion prop	o lo	see Tab	ole 8-1.	977			2	2	-	-	1	1) For gro	ad is for	on prope	rties, se	e Table	8-1. nds: sec	beol load	is for sp	ecial ta	pered jo	list ends	, m	
 First load is ft Computation 	or stands of deflect	ard squ ction is	not req	t ends; s juired ab	second ; xove har	i si peol izonal li	or specine (thick	ial tape. kness 2	red joist (n/18.	ends. 5 for er	id spans,		3) Compt	for inter	f deflect	on is no	t requir	ed abov	re horizon	ai line (t	hicknes	s > (n/	18.5 fo	r end sp	ans,
(4) Exclusive of b	inior spar inidging ju	na). joists a oltv	nd tape	red ends	s. +Can	acity at	elastic	deflecti	on = (/360.			(4) Exclusi Controlled	we of br 1 by shet	idging ja ar capaci	sts and ty.	tapered	i ends.	+ Capacit	y at elas	tic defic	ection =	l _n /360	Ċ	
Commence of an	DDDD	DEPTI	EQ EO	DFSI	UN ICI	ONCE	FTE 4	O CF/	SF) ⁽⁴⁾						PROP	ERTIES	FOR	DESIG	N (CON	ICRETE	. 42 C	F/SF)	(4)		
This was to be a set of the set of the		5	2							-		1 ¥	GATIVE MC	DMENT											
STEEL AFEA (SO, IN)	4	49	.63	11.	00.1		.42	.50	.67	.86		SI	EEL AREA C	SQ. INJ	43	47	50	11. 1	35		2 12	2 5	0 0	0,00	
STEEL % (UNFOR P		48.	1.10	1.38	1.79		.74	88, 5	1.20	1.53		a,	TEEL % (UNI)	FOHMB FRFD)	8 4	45	28	73	95		3 4	1	. 60	10	
(DAPERED) CEC DEPTH AN	4 a	02.0	29 B	82	9.6		44. 6 8.6	9.8	6.7	6.7			EFF. DEPTH	Z.	9.8	9.8	9.8	9.7	9.6		8.0	8,6	6 6	6 6	10 1
- ICR IGH	6/1	198	243	279	328		.179	.205	,253	300			- ICR/IC	5	169	180	520	192	CR	-	2	4	i R	5	
POSITIVE MOMENT	10	ę	ŭ	60	76		22	ίų.	40	5		a 15	USHIVE MU TELAREA (SQ. INJ	5	40	51	.62	75		53	5	0.0		0.1
areconea layunu Siléél s	5 2	91	2 24	26	5		60	.13	.16	.21			STEEL	*	12	16	20	9.7	30 9 B		200	9.8	1 0	9.6	2 10
EFF. DEPTH. IN.	9.8	9.6	1.6	9.7	9.6		9.8	9.8	9.8	271			+ICR/IC	ž s	156	196	240	285	331		15	56	36	10 28	ED ID
1011 1014	9	777	ų.	110	r in							_				-	-	-	-	-	-		-		

8

8-14

CONCRETE REINFORCING STEEL INSTITUTE

TABLE 8-1	1 CROS	SS SEC	TION	PROPE	RTIES	— STA	NDAR	D JOI	ST CO	NSTRU	CTION	(1)
			3-Inch	Top Slab				·. · ·	4.5-Inch	Top Slab		-
(2) Joist	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{og} ⁽³⁾ (in.)	l _g (3) (in.4)	+M _{or} (ft-k)	–M _{cr} (3) (ft-k)	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{cg} (3) (in.)	_g (3) (in.4)	+M _{or.} (ft-k)	–M _{cr} ⁽³⁾ (ft-k)
8 + 5 + 20	120.3	60	7.49	1,104	5.8	12.4	157.8	79	8.50	1,630	7.6	16.1
	152.3		6.75	1,582		14.7	189.8		7.74	2.340		19.4
8+6+20	131.3	63	7.32	1,254	6.8	13.5	170.3	82	8.33	1,852	8.8	17.6
	163.3		6.67	1,709		15.6	202.3		7.65	2,528		20.6
10 + 5 + 20	133.3	67	8.76	1,826	8.2	17.0	170.8	85	9.86	2,561	10.3	21.8
	173.3		7.89	2,594		20.1	210.8		8.93	3,659		26.0
10 + 6 + 20	146.3	70	8.56	2,069	9.6	18.4	185.3	89	9.65	2,906	11.9	23.7
	186.3		7.80	2,801		21.3	225.3		8.83	3,951		27.5
12 + 5 + 20	147.0	74	9.99	2,799	11.1	22.1	184.5	92	11.16	3,797	13.4	28.1
	195.0		9.01	3,951		26.1	232.5		10.10	5,388		33.3
12 + 6 + 20	162.0	78	9.76	3,165	12.8	23.9	201.0	97	10.92	4,300	15.6	30.5
	210.0		8.90	4,264		27.6	249.0		9.97	5,815		35.2
8 + 5 + 30	150.3	54	7.89	1,223	6.1	15.5	202.8	72	8.89	1,813	8.1	19.8
	190.3		7.07	1,914		19.3	242.8		8.08	2,825		25.3
8 + 6 + 30	161.3	56	7.73	1,393	7.1	16.8	215.3	75	8.74	2,058	9.3	21.6
	201.3		6.99	2,051		20.2	255.3		7.99	3,028		26.6
10 + 5 + 30	163.3	58	9.26	2,032	8.7	21.5	215.8	77	10.35	2,841	10.8	27.1
	213.3		8.26	3,145		26.2	265.8		9.35	4,422		33.9
10 + 6 + 30	176.3	61	9.06	2,307	10.1	23.1	230.3	80	10.16	3,227	12.6	29.4
	226.3		8.16	3,366		27.5	280.3		9.24	4,737		35.6
12 + 5 + 30	177.0	63	10.58	3,128	11.7	28.0	229.5	82	11.77	4,219	14.2	35.2
	237.0		9.42	4,790		34.0	289.5		10.57	6,520	1	43.5
12 + 6 + 30	192.0	67	10.34	3,541	13.5	30.1	246.0	85	11.53	4,783	16.4	38.0
12 1 0 1 30	252.0		9.31	5,124		35.6	306.0		10.45	6,979		45.6
14 + 5 + 30	191.3	68	11.86	4,549	15.2	35.0	243.8	87	13.13	5,986	18.0	44.1
	261.3		10.56	6,905		42.4	313.8		11.76	9,174		53.8
$14 \pm 6 \pm 30$	208.3	72	11.59	5,135	17.5	37.5	262.3	91	12.86	6,773	20.8	47.4
1410100	278.3		10.44	7,382		44.4	332.3		11.62	9,812		56.4
16 + 6 + 20	225.3	78	12.81	7,127	22.0	45.5	279.3	97	14.15	9,238	25.8	57.5
10 + 0 + 30	305.3		11.55	10,197		54.1	359.3		12.78	13,295		68.1
16 + 7 + 20	244.3	83	12.55	7,890	24.9	48.3	299.8	101	13.88	10,246	29.2	61.2
10 + 7 + 30	324.3		11.43	10,844		56.6	379.8		12.64	14,137		71.1
$20 \pm 6 \pm 20$	261.3	91	15.18	12,469	32.5	63.0	315.3	109	16.65	15.768	37.4	79.4
20 7 0 7 30	361.3		13.74	17,741		75.8	415.3		15.05	22,454	6	93.9
$20 \pm 7 \pm 20$	284.3	96	14.88	13,769	36.6	67.0	339.8	115	16.33	17,433	42.2	84.3
20 + 7 + 30	384.3		13.61	18,864		79.4	439.8		14.89	23,861		98.1

TABLE 8-	I CROS	S SEC	TION	PROPE	RTIES	— STA	NDAR	D JOIS	ST CO	NSTRU	CTION	(1)
			3-Inch	Top Slab					4.5-Inch	Top Slab		i an
(2) Joist	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{og} ⁽³⁾ (in.)	l _g (3) (in.4)	+M _{cr} (ft-k)	–M _{cr} (3) (ft-k)	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{cg} (3) (in.)) _g (3) (in.4)	+M _{or.} (ft-k)	–M _{cr} (3) (ft-k)
8 + 5 + 20	120.3	60	7.49	1,104	5.8	12.4	157.8	79	8.50	1,630	7.6	16.1
010720	152.3		6.75	1,582		14.7	189.8		7.74	2.340		19.4
8+6+20	131.3	63	7.32	1,254	6.8	13.5	170.3	82	8.33	1,852	8.8	17.6
	163.3		6.67	1,709		15.6	202.3		7.65	2,528		20.6
10 + 5 + 20	133.3	67	8.76	1,826	8.2	17.0	170.8	85	9.86	2,561	10.3	21.8
10+5+20	173.3		7.89	2,594		20.1	210.8		8.93	3,659		26.0
10 + 6 + 20	146.3	70	8.56	2,069	9.6	18.4	185.3	89	9.65	2,906	11.9	23.7
10 1 0 1 20	186.3		7.80	2,801		21.3	225.3		8.83	3,951		27.5
$12 \pm 5 \pm 20$	147.0	74	9.99	2,799	11.1	22.1	184.5	92	11.16	3,797	13.4	28.1
12+5+20	195.0		9.01	3,951		26.1	232.5		10.10	5,388		33.3
12 + 6 + 20	162.0	78	9.76	3,165	12.8	23.9	201.0	97	10.92	4,300	15.6	30.5
12 + 0 + 20	210.0		8.90	4,264		27.6	249.0		9.97	5,815		35.2
9 + 5 + 20	150.3	54	7.89	1,223	6.1	15.5	202.8	72	8.89	1,813	8.1	19.8
0+0+30	190.3		7.07	1,914		19.3	242.8		8.08	2.825		25.3
0 0 0	161.3	56	7.73	1,393	7.1	16.8	215.3	75	8.74	2,058	9.3	21.6
0 + 0 + 30	201.3		6.99	2,051		20.2	255.3		7.99	3,028		26.6
10 + 5 + 20	163.3	58	9.26	2,032	8.7	21.5	215.8	77	10.35	2,841	10.8	27.1
10 + 5 + 50	213.3		8.26	3,145		26.2	265.8		9.35	4,422		33.9
10 + 6 + 20	176.3	61	9.06	2,307	10.1	23.1	230.3	80	10.16	3,227	12.6	29.4
10 + 6 + 50	226.3		8.16	3,366		27.5	280.3		9.24	4,737		35.6
10 (5) 20	177.0	63	10.58	3,128	11.7	28.0	229.5	82	11.77	4,219	14.2	35.2
12+5+30	237.0		9.42	4,790		34.0	289.5		10.57	6,520		43.5
10 . 6 . 20	192.0	67	10.34	3,541	13.5	30.1	246.0	85	11.53	4,783	16.4	38.0
12 + 0 + 30	252.0		9.31	5,124		35.6	306.0		10.45	6,979		45.6
14 1 5 1 20	191.3	68	11.86	4,549	15.2	35.0	243.8	87	13.13	5,986	18.0	44.1
14 + 3 + 30	261.3		10.56	6,905		42.4	313.8		11.76	9,174		53.8
14 + 6 + 20	208.3	72	11.59	5,135	17.5	37.5	262.3	91	12.86	6,773	20.8	47.4
14 + 0 + 50	278.3		10.44	7,382		44.4	332.3		11.62	9,812		56.4
16 + 6 + 20	225.3	78	12.81	7,127	22.0	45.5	279.3	97	14.15	9,238	25.8	57.5
10 + 0 + 30	305.3		11.55	10,197		54.1	359.3		12.78	13,295		68.1
16 / 7 / 20	244.3	83	12.55	7,890	24.9	48.3	299.8	101	13.88	10,246	29.2	61.2
10 + 7 + 30	324.3		11.43	10,844		56.6	379.8		12.64	14,137		71.1
20 : 6 : 20	261.3	91	15.18	12,469	32.5	63.0	315.3	109	16.65	15.768	37.4	79.4
20 + 6 + 30	361.3		13.74	17,741		75.8	415.3		15.05	22,454		93.9
20 . 7 . 20	284.3	96	14.88	13,769	36.6	67.0	339.8	115	16.33	17,433	42.2	84.3
20 + 7 + 30	384.3		13.61	18,864		79.4	439.8		14.89	23,861		98.1

TABLE 8-1	I CROS	S SEC	TION	PROPE	RTIES	— STA	NDAR	D JOIS	ST CO	NSTRU	CTION	(1)
			3-Inch	Top Slab					4.5-Inch	Top Slab		-
(2) Joist	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{og} ⁽³⁾ (in.)	l _g ⁽³⁾ (in.4)	+M _{cr} (ft-k)	–M _{cr} (3) (ft-k)	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{cg} (3) (in.)	_g (3) (in.4)	+M _{or.} (ft-k)	–M _{cr} (3) (ft-k)
8 + 5 + 20	120.3	60	7.49	1,104	5.8	12.4	157.8	79	8.50	1,630	7.6	16.1
	152.3		6.75	1,582		14.7	189.8		7.74	2.340		19.4
8+6+20	131.3	63	7.32	1,254	6.8	13.5	170.3	82	8.33	1,852	8.8	17.6
	163.3		6.67	1,709		15.6	202.3		7.65	2,528		20.6
10 + 5 + 20	133.3	67	8.76	1,826	8.2	17.0	170.8	85	9.86	2,561	10.3	21.8
	173.3		7.89	2,594		20.1	210.8		8.93	3,659		26.0
10 + 6 + 20	146.3	70	8.56	2,069	9.6	18.4	185.3	89	9.65	2,906	11.9	23.7
	186.3		7.80	2,801		21.3	225.3		8.83	3,951		27.5
12 + 5 + 20	147.0	74	9.99	2,799	11.1	22.1	184.5	92	11.16	3,797	13.4	28.1
	195.0		9.01	3,951		26.1	232.5		10.10	5,388		33.3
12 + 6 + 20	162.0	78	9.76	3,165	12.8	23.9	201.0	97	10.92	4,300	15.6	30.5
	210.0		8.90	4,264		27.6	249.0		9.97	5,815		35.2
8 + 5 + 30	150.3	54	7.89	1,223	6.1	15.5	202.8	72	8.89	1,813	8.1	19.8
	190.3		7.07	1,914		19.3	242.8		8.08	2,825		25.3
8+6+30	161.3	56	7.73	1,393	7.1	16.8	215.3	75	8.74	2,058	9.3	21.6
	201.3		6.99	2,051		20.2	255.3		7.99	3,028		26.6
10 + 5 + 30	163.3	58	9.26	2,032	8.7	21.5	215.8	77	10.35	2,841	10.8	27.1
	213.3		8.26	3,145		26.2	265.8		9.35	4,422		33.9
10 + 6 + 30	176.3	61	9.06	2,307	10.1	23.1	230.3	80	10.16	3,227	12.6	29.4
	226.3		8.16	3,366		27.5	280.3		9.24	4,737		35.6
12 + 5 + 30	177.0	63	10.58	3,128	11.7	28.0	229.5	82	11.77	4,219	14.2	35.2
	237.0		9.42	4,790		34.0	289.5		10.57	6,520	1	43.5
12 + 6 + 30	192.0	67	10.34	3,541	13.5	30.1	246.0	85	11.53	4,783	16.4	38.0
	252.0		9.31	5,124		35.6	306.0		10.45	6,979		45.6
14 + 5 + 30	191.3	68	11.86	4,549	15.2	35.0	243.8	87	13.13	5,986	18.0	44.1
	261.3		10.56	6,905		42.4	313.8		11.76	9,174		53.8
14 + 6 + 30	208.3	72	11.59	5,135	17.5	37.5	262.3	91	12.86	6,773	20.8	47.4
	278.3		10.44	7,382		44.4	332.3		11.62	9,812		56.4
16 + 6 + 30	225.3	78	12.81	7,127	22.0	45.5	279.3	97	14.15	9,238	25.8	57.5
	305.3		11.55	10,197		54.1	359.3		12.78	13,295		68.1
16 + 7 + 30	244.3	83	12.55	7,890	24.9	48.3	299.8	101	13.88	10,246	29.2	61.2
	324.3		11.43	10,844		56.6	379.8		12.64	14,137		71.1
20 + 6 + 30	261.3	91	15.18	12,469	32.5	63.0	315.3	109	16.65	15.768	37.4	79.4
	361.3		13,74	17,741		75.8	415.3		15.05	22,454		93.9
20 + 7 + 30	284.3	96	14.88	13,769	36.6	67.0	339.8	115	16.33	17,433	42.2	84.3
	384.3		13.61	18,864		79.4	439.8		14.89	23,861		98.1

TABLE 8-1 CROSS SECTION PROPERTIES — STANDARD JOIST CONSTRUCTION (1)													
			3-Inch	Inch Top Slab				4.5-Inch Top Slab					
(2) Joist	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{og} ⁽³⁾ (in.)	l _g (3) (in.4)	+M _{cr} (ft-k)	–M _{cr} (3) (ft-k)	Gross Area ⁽³⁾ (in. ²)	Wt. ⁽⁴⁾ (psf)	Y _{cg} (3) (in.)	_g (3) (in.4)	+M _{or.} (ft-k)	M _{cr} (3) (ft-k)	
8 + 5 + 20	120.3	60	7.49	1,104	5.8	12.4	157.8	79	8.50	1,630	7.6	16.1	
	152.3		6.75	1,582		14.7	189.8		7.74	2.340		19.4	
8 + 16 + 20	131.3	63	7.32	1,254	6.8	13.5	170.3	82	8.33	1,852	8.8	17.6	
	163.3		6.67	1,709		15.6	202.3		7.65	2,528		20.6	
10 + 5 + 20	133.3	67	8.76	1,826	8.2	17.0	170.8	85	9.86	2,561	10.3	21.8	
	173.3		7.89	2,594		20.1	210.8		8.93	3,659		26.0	
10 + 6 + 20	146.3	70	8.56	2,069	9.6	18.4	185.3	89	9.65	2,906	11.9	23.7	
	186.3		7.80	2,801		21.3	225.3		8.83	3,951		27.5	
12 + 5 + 20	147.0	74	9.99	2,799	11.1	22.1	184.5	92	11.16	3,797	13.4	28.1	
	195.0		9.01	3,951		26.1	232.5		10.10	5,388		33.3	
12 + 6 + 20	162.0	78	9.76	3,165	12.8	23.9	201.0	97	10.92	4,300	15.6	30.5	
	210.0		8.90	4,264		27.6	249.0		9.97	5,815		35.2	
8 + 5 + 30	150.3	54	7.89	1,223	6.1	15.5	202.8	72	8.89	1,813	8.1	19.8	
	190.3		7.07	1,914		19.3	242.8		8.08	2,825		25.3	
8 + 6 + 30	161.3	56	7.73	1,393	7.1	16.8	215.3	75	8.74	2,058	9.3	21.6	
	201.3		6.99	2,051		20.2	255.3		7.99	3,028		26.6	
10 + 5 + 30	163.3	58	9.26	2,032	8.7	21.5	215.8	77	10.35	2,841	10.8	27.1	
	213.3		8.26	3,145		26.2	265.8		9.35	4,422		33.9	
10 + 6 + 30	176.3	61	9.06	2,307	10.1	23.1	230.3	80	10.16	3,227	12.6	29.4	
	226.3		8.16	3,366		27.5	280.3		9.24	4,737		35.6	
12 + 5 + 30	177.0	63	10.58	3,128	11.7	28.0	229.5	82	11.77	4,219	14.2	35.2	
	237.0		9.42	4,790		34.0	289.5		10.57	6,520		43.5	
12 + 6 + 30	192.0	67	10.34	3,541	13.5	30.1	246.0	85	11.53	4,783	16.4	38.0	
	252.0		9.31	5,124		35.6	306.0		10.45	6,979		45.6	
14 + 5 + 30	191.3	68	11.86	4,549	15.2	35.0	243.8	87	13.13	5,986	18.0	44.1	
	261.3		10.56	6,905		42.4	313.8		11.76	9,174		53.8	
14 + 6 + 30	208.3	72	11.59	5,135	17.5	37.5	262.3	91	12.86	6,773	20.8	47.4	
	278.3		10.44	7,382		44.4	332.3		11.62	9,812		56.4	
16 + 6 + 30	225.3	78	12.81	7,127	22.0	45.5	279.3	97	14.15	9,238	25.8	57.5	
	305.3		11.55	10,197		54.1	359.3		12.78	13,295		68.1	
16 + 7 + 30	244.3	83	12.55	7,890	24.9	48.3	299.8	101	13.88	10,246	29.2	61.2	
	324.3		11.43	10,844		56.6	379.8		12.64	14,137		71.1	
20 + 6 + 30	261.3	91	15.18	12,469	32.5	63.0	315.3	109	16.65	15.768	37.4	79.4	
	361.3		13.74	17,741		75.8	415.3		15.05	22,454		93.9	
20 + 7 + 30	284.3	96	14.88	13,769	36.6	67.0	339.8	115	16.33	17,433	42.2	84.3	
	384.3		13.61	18,864		79.4	439.8		14.89	23,861		98.1	

FDA CDRH Laboratory Silver, Spring Maryland

Appendix F Current System

Depth and Weight

Slab: 4.5" Joist: 16"X16". Center to Center Distance: 3' Joists Span: 30'-9". Bay Dimension: 30'-9"X21'

Total Number of joists per bay: 30'9"=369"/30" =12.3 = 13 Joists/bay

Total Depth = Joist Depth + Slab Depth = 16"+4.5"=20.5"

Total Weight of joist and slab=(area of joist)(number of joists)(150pcf)+(Area of Slab)(150pcf) =(16")(16")(30'-9")(13)(150pcf)+(30'-9")(21')(4.5")(150pcf)=142923.4375lbs=142.92k

Typical beam is 19.7" wide by 20.5"

Assume each column is 12" then beams are spanning length-1'

Weight of beam:

Weight of beam=(area of beam)(150pcf) =(20')(19.7")(20.5")(150pcf)=8413.54lbs=8.41k (short span) =(29.9')(19.7")(20.5")(150pcf)=12515.14lbs=12.5k (Long span)

Total Weight of bay (assuming 1/2 of a beam on each side)

=(weight of 2(1/2) beams) + (weight of 2(1/2) beams) + (wieght of slab and joists) =8.41k+ 12.5k + 142.92k =163.83k