

Timothy Mueller
Senior Thesis, Spring 2006
Structural Option

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

P
R
O
J
E
C
T
G
R
O
U
N

Navy Ordnance Site

U.S. General Services Administration

U.S. Food and Drug Administration

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

P R O J E C T G R

U

N

Delivery Method: Design-Bid-Build

Major Building Code: IBC 2000

Cost: \$63 Million

Start Date: March 22, 2005

Finish Date: November 1, 2006

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Size:

• 139,805 Sq Ft

Height:

- •86' above grade
- Central core w/ 5th floor penthouse
- Four story main structure
- One floor below grade

Façade:

- Many decorative aluminum & sheet metal panels
- Ribbon windows
- Full glazing curtain walls
- Horizontal sunshields

High Bay Laboratory:

- Located on West Side
- Decorative curved metal roof

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

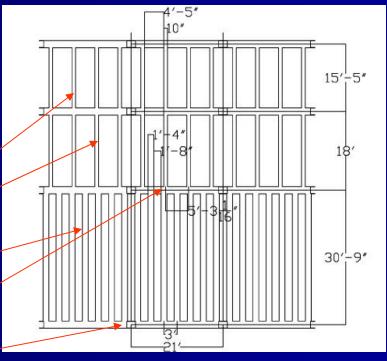
Roof:

Typical concrete on metal deck w/ steel frame of:

- W14X122
- W10X73

Superstructure:

Typically one-way cast-in-place concrete w/ monolithic poured:


- 4.5" slab
- 10"X16" joist
- 16"X16" joist
- 20"X20.5" beams
- 18"X24" columns

Unique protection:

• 20"X30" progressive collapse beams

Foundation:

- 3' deep step footing
- 10'X10'spread footing below columns

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

D E S P T T U H D

Considerations:

Concrete Pros:

- High Vibration Stability
- Integrated Fireproofing
- Small Floor Sandwich

Concrete Cons:

- Labor Intensive
- Large Total Mass
- Steel Roof System

Proposed Solution:

• Construct the FDA CDRH Laboratory with Steel

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

D E S P T T U H D

Loading:

Dead load: 73psf

USF2X deck and Concrete: 48psf

Superimposed: 25psf

Snow load (Washington D.C.): 30psf

Live Load: 125psf

Light Manufacturing (Most Laboratory Spaces): 125psf Light Storage (Supplementary Laboratory Spaces): 125psf

The controlling combination in both N/S and E/W direction is 1.2D + 1.0E + 0.5L + 0.2S

for all floors except the first floor which was controlled in both directions by 1.2D + 1.6W + 0.5L + 0.5S

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

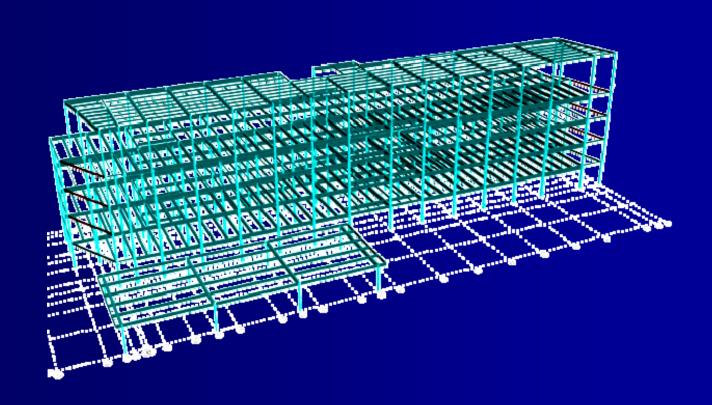
Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis


Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

E S T T U D Y

G R A N V A I L T Y Y S

Deflection Criteria:

Live: 1/360, Total: 1/240, & Vibration Criteria

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

E S T U D Y

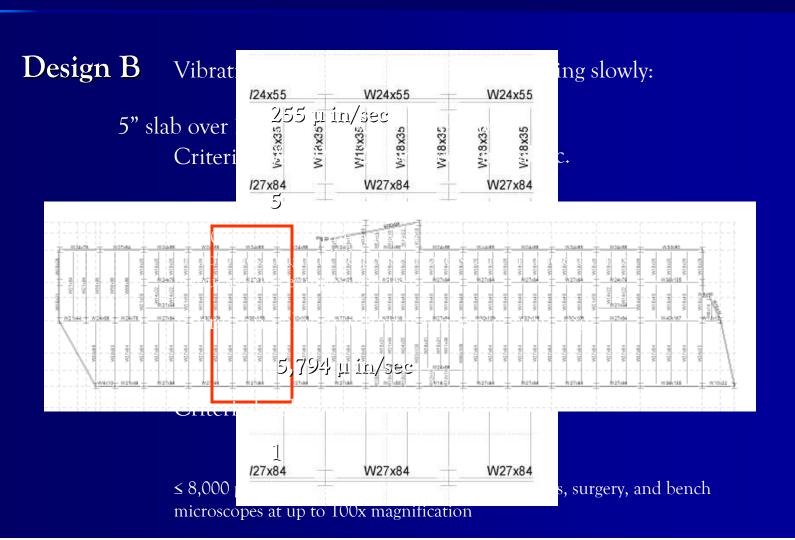
G R A N V A I L T Y Y S I S Design A Vibrat


5" slab over Criteri

33		W10x33		W10x33
10 6	5,214	. II mm√sec		W8x10
10	₩24x6	PI Mon√sec W8x10	W24x68	W8x10
10	4	W8x10		W8x10
10		W8x10	- 2 -	W8x10
10	W27x84	W8x10	W27x84	W8x10
10		W8x10		W8x10
10		W8x10		W8x10
10	50	086 ji <u>in</u> / W8x10	88	W8x10
10	W40x167	W8x10	W40x167	W8x10
10 ()	W8x10		W8x10
33		W10x33		W10x33

lking slowly:

ric.



Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

D E P T T H D

G R A N V A I L T Y Y S I S

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

D E P T H D

S

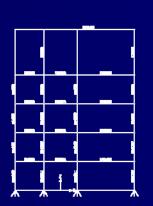
Deflection Criteria:

h/400

Seismic Deflection Criteria:

0.02h/floor

No damage to building systems (h/180)



Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

D S

S S

Design A

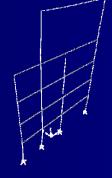
Story

Penthouse

Full Building

Moment Frame Second Redesign Allowable Drift (in.)

0.4830


0.4830

0.4830

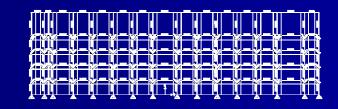
0.4830

0.7599

3.1749

Story Drift (in.)

0.4688


0.2619

0.2230

0.1829

0.3941

1.5307

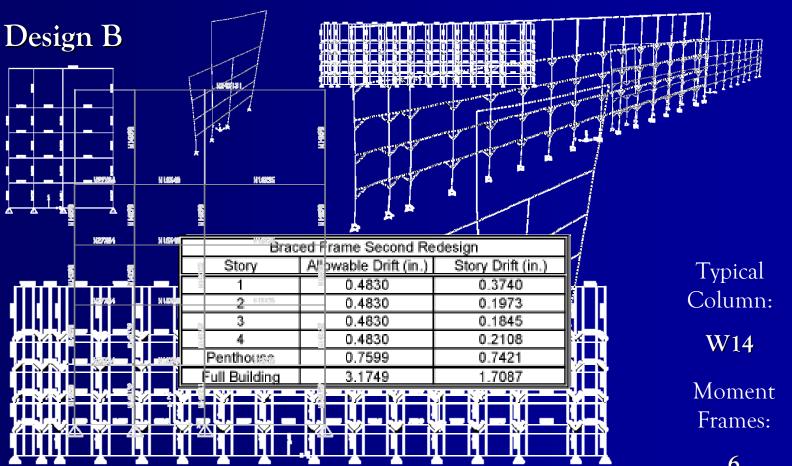
Typical

Column:

W14

Moment Frames:

3


Braced Frame First Redesign						
Story	Allowable Drift (in.)	Story Drift (in.)				
1	0.4830	0.3367				
2	0.4830	0.2280				
3	0.4830	0.1947				
4	0.4830	0.1748				
Penthouse	0.7599	0.2740				
Full Building	3.1749	1.1416				

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

D

S

6

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Blast Control:

- Location center of the limited access White Oak campus
- One road access point north end of the building
- No interior below grade parking garages
- Extra layer of welded wire mesh in upper portion of the deck
- Moment connections
- Square columns HSS shapes versus W-shape resistance torsion
- progressive collapse beam support the load of two bay spans without deflection criteria W40X230 to W40X431
- Overall cost of a blast resistant system as compared to a non-resistive 5% increase

		winds which
	/	
	/	
1	102.001	11 10738 2
15		
10	witell	Media .
2	WZDEK	2 years
ii.	wiber	i winds i winds
1	within	The second second
2	C3811	g grade made
1	WIDE	F Brook Emps
4	Winds	WINE WISES
2	WIDE	L waster L waster L
250	90000	S wait Swam
+1	Wilde	H WIENE H WIENE
2	Wilde	g wast gwast g
ž.	WIDH	With Eways
	WEDS	
+		
3	WIDE	With Swings
Market N	WORK	Wileys & Wileys
	WIDEL	Wilds Wilson
11	intities	1
17		a amus n
-	Wibite	E Sweet W
-	W1503	wiss wise
ethet		made made in
2.	975-01 971-08	
Wines Street	it works	S WIENE SWEET S
1		11000 11000
+-	903)9139 WEBGE	1 - with 1 - with 14
HINT T		With Winds
1	Maria Maria	S waste Swam
1300	SERVICE.	
+		
5-	Wilhelm	S S S
1	Withte	S when Switch
	wither.	wisus wisus
1	WIDH	
8		# 8 8
£.	WINE	With Ewito B
	WIDE	1 WAN 1 WAN 1
	within	with winds
Name of	witer	8 8 8
-		300 B B B
-	WIDE	1 + 40.058 1 WIROS 1
16	wither	a Misco water
127.00	WEDS	E Swarz Eways
1	MOTOR	11 41212 11 30202 11
-	WINE	W1545 W1505
ž.	within	E ward Ewalds E
		Martin Brancis B
1	WINES	WIEWE WIEWE
100		
1	WHILE	WEST WINE
	WHEE	MILES WILLS

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Height

Total height increase: 8.25'

- No height restrictions
- Slight increase in wind loads
- Minimal additional cladding cost

Weight/Foundation

Total mass decrease: ¼ original design (just under 6 million kips)

- Lower seismic forces
- Foundations reduced to 1/3 original area

Fireproofing

Compatible spray-on fireproofing

- Decking: 3/8"
- Beams and girders: 1"
- Columns: 1-3/8"

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

D E S P T T U H D

Considerations:

Concrete Pros:

- High Vibration Stability
- Integrated Fireproofing
- Small Floor Sandwich

Concrete Cons:

- Labor Intensive
- Large Total Mass
- Steel Roof System

Proposed Solution:

- Design B Steel Structure Proposed Solution:
- Fewer members
 Construct the FDA CDRH
 - · Highbridgation/controll
 - Blast control
 - More moment connections

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

B R S E T A U D D T Y

Cost:

• Current System (concrete)

\$4,492,275.00

• Design A (steel spanning N-S)

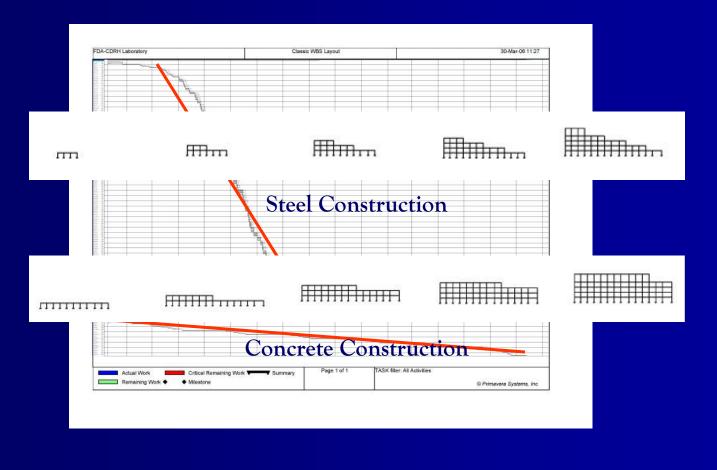
\$6972993540000

• Design B (steel spanning E-W)

\$1,100,052.00

• Design B with Blast Resistance

\$9,300,4400,851.5


O M
N A
S N
T A
R G
U E
C M
T E
I N
O T

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

B R S E T A U D D T Y

C O M N A S N T A G U E C M T E I N O T

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

B R S E T A U D D T Y

Considerations:

Concrete Pros:

- High Vibration Stability
- Integrated Fireproofing
- Small Floor Sandwich

Concrete Cons:

- Labor Intensive
- Large Total Mass
- Steel Roof System

Proposed Solution:

- Proposed Solution:
 Design B Steel Structure
- Design B Steel Structure • Fewer members
 - Fewer members.
 Increased vibration control
 - High Vibration control.
 More moment connections
 - Blast control
 Cost savings
 - More moment connections • Time savings

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

B R S E T A U D D T Y H

THERMAGUARD™
Exclusive epoxy-coated

Timothy Mueller • Senior

Option

B R S E T A U D D T Y H

A

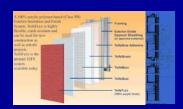
R

A

Steel façade

W27X84 to W30X90 W21X50 to W24X76 W18X40 to W21X48

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option


B R S E T A U D D T Y

A R C H I T E C T U R A

Steel façade

Brick façade

Precast façade

E.I.F.S. façade

\$1,086,093.35

\$\$,55992,5609037

\$\$45749993145

\$1\$0393786672

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

B R H

R

Considerations:

Concrete Pros:

- High Vibration Stability
- Integrated Fireproofing
- Small Floor Sandwich

Concrete Cons:

- Labor Intensive
- Large Total Mass
- Steel Roof System

Proposed Solution:

Proposed Solution ructure

- Des Feybratel Structure
 - Increased vibration control
 Fewer members

 - More moment connections
 - Increased vibration control
 Cost savings

 - More moment connections
- · Precast Façages
 - Fast installation
 Time savings
 - Traditional image
 - Additional blast resistance

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

S U M M C A O R N Y C L A U N S D I O N

S

Current Building (concrete structure & steel façade)

\$5,578,368.35

Proposed Building (steel structure & steel façade)

\$4,364,74928550

Proposed Building (steel structure & precast façade)

\$5,413,6,4827.560

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

S U M M C A O R N Y C L A U N S D I O N

S

Current Building
(concrete structure & steel façade)
Time Savings

\$5,578,368.35

Greater Than Satisfactory Libration Control (steel structure & steel facade)

Equivalent Fireproofing

Campus Unifying Façade 441,540.75

Smaller Foundation

Increased Blast Protection

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Project Background

General Architecture

Existing Structure

Depth Study

Gravity Analysis

Lateral Analysis

Additional Considerations

Breadth Study

Construction Management

Architectural Analysis

Summary and Conclusions

A

FDA CDRH Laboratory

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

I would like to thank the following people:

James Piedrafita, Truland Systems Corporation, for providing me with all of my resources, as well as a work experience and knowledge that can not be quantified.

Dr. Ali Memari, Penn State University, for being my faculty advisor.

Dr. Walter Schneider, Penn State University, for being my advisor in the Fall of 2005 as well as a tremendous help throughout the thesis year.

Dr. Hanagan and **Professor Parfitt**, Penn State University, for a answering my incessant questions with great patience.

The AE Faculty and Staff, Penn State University, for providing me with a truly unique and extraordinary college experience and the ability to present my thesis.

The Professional Structural Mentors, for providing insight in a matter of seconds that would take me days to unravel.

My Friends, who without their help, support, and ear, I would never have been able to survive this past year.

and

My Family, who not only provided me with a sounding board this past year, but a sound foundation to build my future from.

Timothy Mueller • Senior Thesis • Spring 2006 • Structural Option

Questions?