

Timothy Moore Penn State University Architectural Engineering Structural Emphasis Advisor: Prof. Ali Memari

Thesis Presentation - Spring 2006

Introduction

Building Professionals

Existing Structure

Columns

Floor System Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Introduction

Building Professionals

Existing Structure

Columns

Floor System Lateral System

Lateral Sys

<u>Proposal</u>

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Introduction

Erie on the Park

PENNSTATE

- > 25 Story condominium complex
 - > 30' high lobby entrance
 - Floor 2-4: parking for 186 cars
 - ➢ Floor 5-24: 128 residential units
 - > 310 ft² Studios
 - > 1650 ft² 3 bedroom suites
 - ≻ 25th Floor: Mechanical floor
 - ➢ Fitness Center on the 6th floor

Building

Located in the River North district of Chicago, IL
Less than a mile from the Loop

Introduction

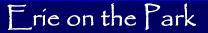
Building Professionals

Existing Structure

Columns

Floor System Lateral System

Proposal


Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Introduction

Building Professionals

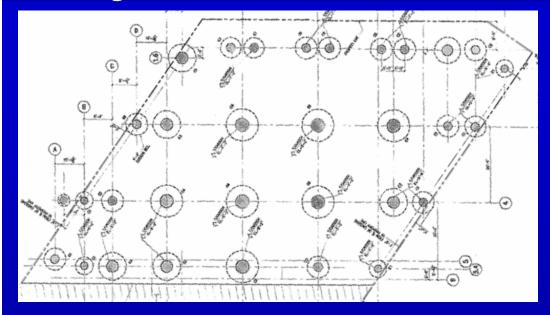
Existing Structure

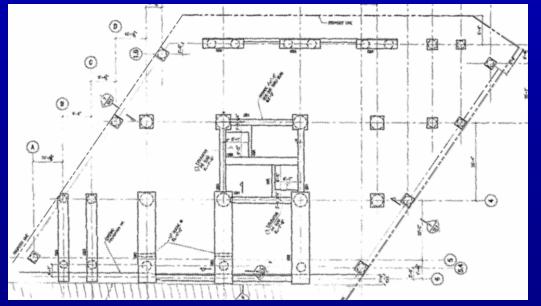
Columns Floor System

Lateral System

Proposal

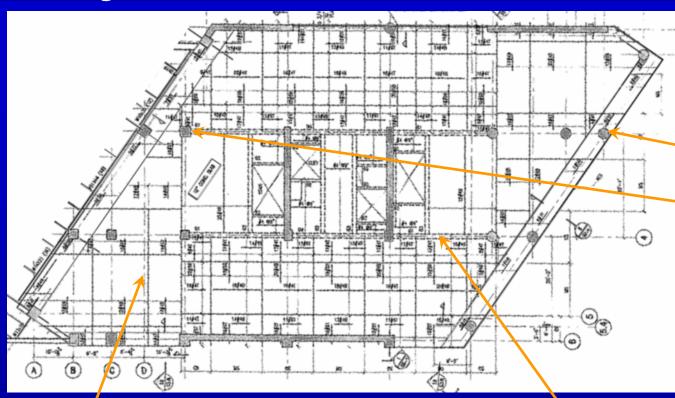
Structural Redesign


Gravity System Lateral System Cost & Schedule


LEED Design

Recommendation

Erie on the Park


Foundation

- ≻ 85' Drilled hardpan caissons
- Allowable soil bearing pressure of 30,000 psf
- Shaft diameter: 30"-54"
- Bell diameter: 4'-11'
- ≻ f'_c = 6,000 psi
- Caisson caps are 3' deep and 6" longer and wider than their respective caisson
- Grade beams connect caisson caps to provide greater stiffness and resistance against overturning
- ➢ Grade beam depth: 52"-100"
- ➢ Grade beam width: 24"-72"

PENNSTATE

Tim Moore

Thesis Presentation Spring 2006

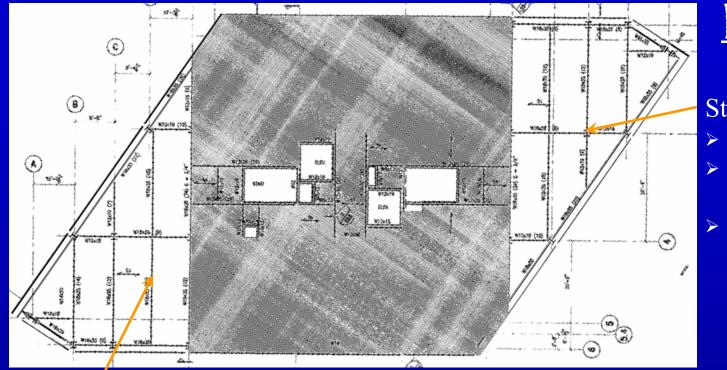
Erie on the Park

Floors 2, & 3

Columns:

- > 30" Diameter east of column line G
- Rectilinear columns west of column line F

Flat-plate Floor Slab:


- \succ 12" thick slab
- ➢ Grade 60 deformed rebar epoxy coated
- $> f_c^2 = 6,000 \text{ psi}$

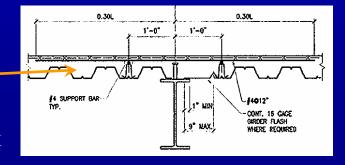
Concrete Beams:

- ➤ 12"x24" beams
- Provide added strength around elevator and stairwell openings

Erie on the Park

Floors 4-6

Steel Columns:


- ➤ W14 shapes
- Typical splice height of 4'
- > $f_y = 50 \text{ ksi}$

Steel Beams:

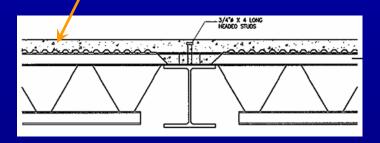
- Fully composite system
- ➢ Girders: W18x55
- ➢ Beams: W18x35

Slab-on-Deck:

- > 4.5" thick slab
- > 3" composite steel deck

PENNSTATE

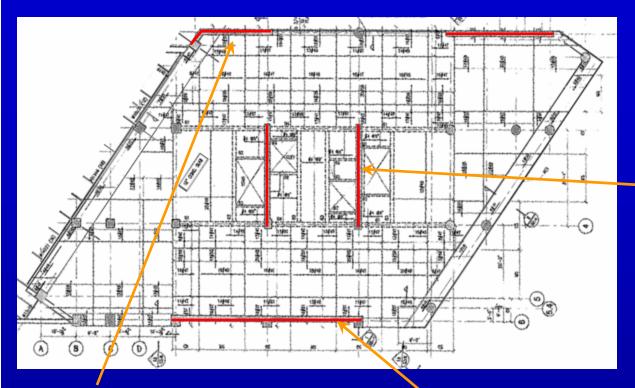
×



Steel Columns:

- ➤ W14 shapes
- Typical splice height of 4'
- > $f_y = 50 \text{ ksi}$

Slab-on-Deck: > 2" thick slab


> 5/8" formed steel deck

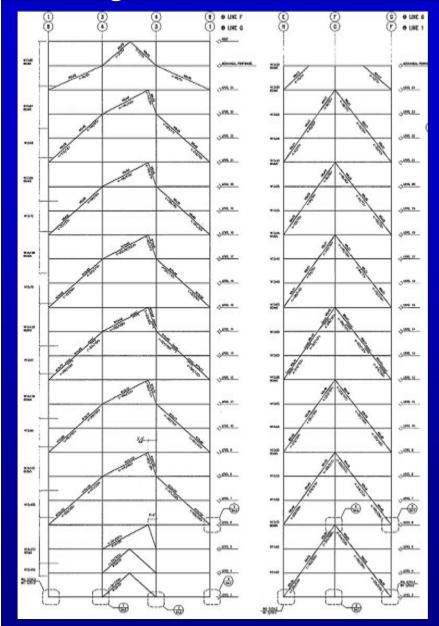
Steel Beams:

- > Open web steel joists span E-W
- > Partially composite with girders
- ➢ Girders: W12x96

Erie on the Park

- N-S Shear Walls:

- ▶ 18"x28'
- Rebar increased at ends to take axial loads
- $> f_c^* = 8000 \text{ psi}$


E-W Walls (column line 1): ≻ 18" thick

 $> f_c^2 = 8000 \text{ psi}$

E-W Wall (column line 6):

- ➤ 18" thick
- $> f_c^* = 6000 \text{ psi}$
- > 8 ksi pilasters take gravity loads

Erie on the Park Lateral System Floors 4-24

Steel Braces:

- ➤ Columns are W14 shapes
- ➢ Beams are W12 shapes
- ➢ Braces are W8 & W10 shapes

Introduction

Building Professionals

Existing Structure

Columns

Floor System Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Introduction

Building Professionals

Existing Structure

Columns Floor System

Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Proposal

Erie on the Park

PENN<u>STATE</u>

Floor System

Flat-Plate System

- Comparable Costs
- Less Vibration
- Easy Formwork
- > Inherent Fireproofing

Post-tensioning

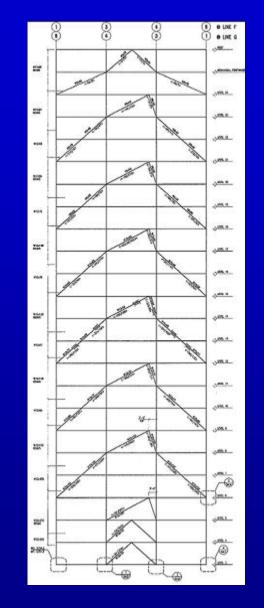
- > Reduce floor depth
- > Stiffer against lateral loads
- > Helps resist punching shear

	Steel Joists	Concrete Joists	Flat Plate	Flat Slab	Precast Double-Tees	Composite Steel Beams
Weight (psf)	30	85	112.5	123	54	40
Depth (in)	16	18.5	9	9 +7	14	14
Vibration	Maybe	No	No	No	No	Maybe
Column Size	W14	20x20	31x31	15x15	20x20	W14
Constructability	Easy	Hard	Medium	Medium - Hard	Easy	Medium
Long Lead	Y	N	N	N	Y	Y
Formwork	Ν	Y	Y	Y	N	N
Fire Rating (hr)	1.5-2	>2	>2	>2	1.5-2	1-2
Cost (USD)						
Materials	7.85	6.85	5.20	5.80	6.35	8.65
Installation	4.28	9.40	7.05	7.50	1.30	4.49
Total	12.13	16.25	12.25	13.30	7.65	13.14
Viable Alternative	XXX	No	Yes	No	Yes	Yes

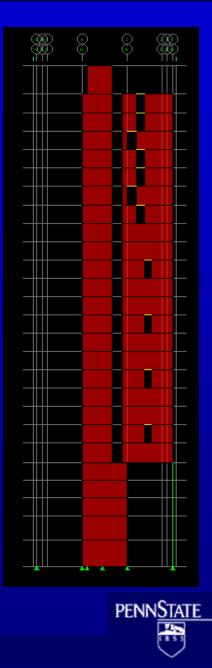
Tim Moore

Thesis Presentation Spring 2006

Proposal


Lateral System

Shear Walls


- Lateral Force
 Resisting System
- Stiffer than moment frame system

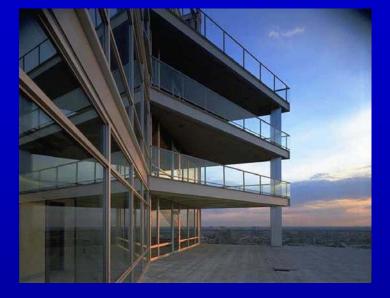
Slab-Frame System

- Integrate with shear walls
- Creates double curvature response

Erie on the Park

Tim Moore

Thesis Presentation Spring 2006


Proposal

Erie on the Park

Design Codes: → IBC 2003 → ASCE 7 - 02 → ACI 318 - 05

Criteria:

- ≻ Cost
- Construction Schedule
- Ease of Construction
- Susceptibility to Vibration
- Building Weight
- Coordination with other Trades
- > Maintain Architecture Scheme
 - Flexible Floor Plans
 - > Floor to Ceiling Windows
 - > Dynamic Façade

Introduction

Building Professionals

Existing Structure

Columns

Floor System Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Introduction

Building Professionals

Existing Structure

Columns Floor System

Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Erie on the Park

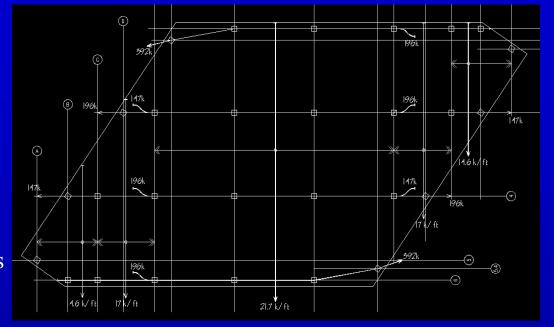

Flat-Plate System

- Shear Design
 - Punching Shear
 - ➢ Wide Beam Shear
- Flexural Design
 - Direct Design
 - > Equivalent Lateral Frame
- ➤ Lateral Frame
 - > Portal Frame Analysis

Final Design

≻ 10" Slab

- > 22 #6 bars in CS negative moment area
- > 20 #4 bars in CS positive moment area
- > 20 #4 bars in MS negative moment area
- > 15 #4 bars in MS positive moment area
- > 15"x15" columns increasing to 30"x30"



Tím Moore

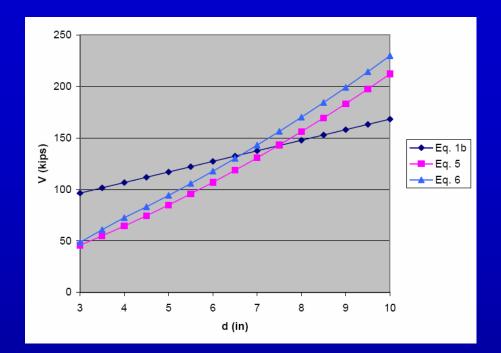
Erie on the Park

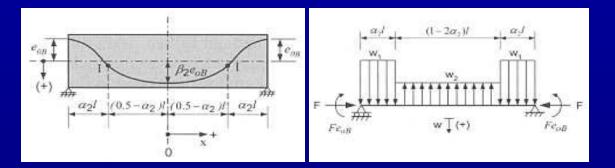
PT Flat-Plate System

- Shear Design
 - Punching Shear
 - ➢ Wide Beam Shear
- Flexural Design
 - Load Balancing
 - > Equivalent Lateral Frame
 - Service and Ultimate Loads
- Lateral Frame
 - Portal Frame Analysis

Final Design

- ≻ 8" Slab
- > Tendons banded in E-W direction
- > Uniform tendons in N-S direction
- ➤ 15"x15" columns increasing to 30"x30"

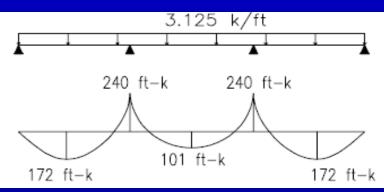

Erie on the Park


PENN<u>STATE</u>

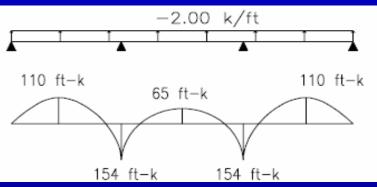
PT Flat-Plate System ≻ Shear Design ≻ Punching Shear

V_c = Φ*4*√(f'_c)*b_o*d d = 7.5" → Slab depth of 9" V_c = Φ* (β_p*√(f'_c) + 0.3* f_{pc})*b_o*d + V_p

d = 6.75" \rightarrow Slab depth of 8"



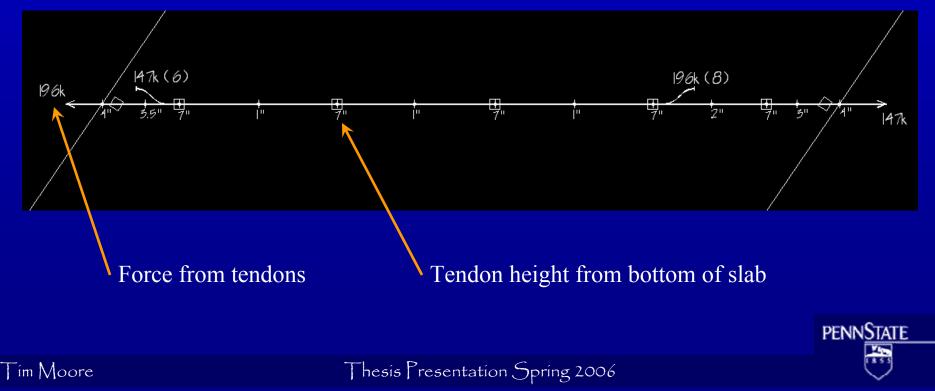
Tim Moore


Thesis Presentation Spring 2006

PT Flat-Plate System

- ≻Flexural Design
 - Load Balancing
 - > Equivalent Lateral Frame


Uniform unfactored dead load


Equivalent load induced by tendons

Can increase/decrease induced load by:

- > adjusting sag/drape of tendons
- ➤ adjusting force of tendons
- > changing number of tendons

Example of an interior, banded tendon strip

Eríe	on	the	Park
------	----	-----	------

	Wind						Seismic					
	Cas	se 1	Cas	se 2	Cas	se 3	Cas	se 4	10" S	lab	8" PT	Slab
Story	N-S	E-W	N-S	E-W	N-S	E-W	N-S	E-W	Shear Walls	Frame	Shear Walls	Frame
Roof	22.05	11.55	16.54	8.66	16.54	8.66	12.41	6.50	14.80	16.44	12.08	13.43
Mechanical	36.39	34.62	27.29	25.96	27.29	25.96	20.49	19.49	41.60	46.23	37.49	41.66
24	39.60	26.87	29.70	20.15	29.70	20.15	22.29	15.13	29.82	33.13	24.76	27.51
23	38.58	26.22	28.93	19.66	28.93	19.66	21.72	14.76	27.45	30.50	22.79	25.33
22	37.75	25.75	28.32	19.31	28.32	19.31	21.26	14.50	25.19	27.98	20.91	23.24
21	43.85	25.75	32.89	19.31	32.89	19.31	24.69	14.50	25.47	28.30	21.15	23.50
20	43.85	25.75	32.89	19.31	32.89	19.31	24.69	14.50	23.18	25.76	19.25	21.39
19	43.85	25.75	32.89	19.31	32.89	19.31	24.69	14.50	21.00	23.33	17.43	19.37
18	42.86	25.26	32.15	18.95	32.15	18.95	24.13	14.22	20.74	23.05	17.22	19.14
17	41.88	24.77	31.41	18.58	31.41	18.58	23.58	13.95	18.58	20.65	15.43	17.15
16	41.39	24.53	31.04	18.40	31.04	18.40	23.30	13.81	16.55	18.38	13.74	15.26
15	41.14	24.41	30.85	18.31	30.85	18.31	23.16	13.74	14.62	16.25	12.14	13.49
14	40.15	23.92	30.12	17.94	30.12	17.94	22.61	13.47	12.82	14.25	10.65	11.83
13	40.15	23.92	30.12	17.94	30.12	17.94	22.61	13.47	10.99	12.21	9.12	10.14
12	39.17	23.44	29.38	17.58	29.38	17.58	22.05	13.19	9.57	10.64	7.95	8.83
11	39.17	23.44	29.38	17.58	29.38	17.58	22.05	13.19	8.13	9.03	6.75	7.50
10	37.94	22.83	28.45	17.12	28.45	17.12	21.36	12.85	6.80	7.55	5.64	6.27
9	37.53	22.62	28.14	16.97	28.14	16.97	21.13	12.74	5.59	6.21	4.64	5.15
8	36.34	22.04	27.25	16.53	27.25	16.53	20.46	12.41	4.50	5.00	3.73	4.15
7	35.60	21.67	26.70	16.25	26.70	16.25	20.04	12.20	3.52	3.91	2.93	3.25
6	36.23	22.16	27.17	16.62	27.17	16.62	20.40	12.48	2.60	2.89	2.15	2.39
5	34.14	21.00	25.61	15.75	25.61	15.75	19.22	11.82	1.83	2.03	1.51	1.68
4	30.71	19.01	23.04	14.25	23.04	14.25	17.29	10.70	1.14	1.27	0.92	1.02
3	30.05	18.72	22.53	14.04	22.53	14.04	16.92	10.54	0.73	0.81	0.59	0.66
2	35.51	22.33	26.63	16.75	26.63	16.75	19.99	12.57	0.40	0.45	0.33	0.36
Mezzanine	39.85	25.39	29.89	19.04	29.89	19.04	22.43	14.29	0.03	0.04	0.03	0.03
Ground	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

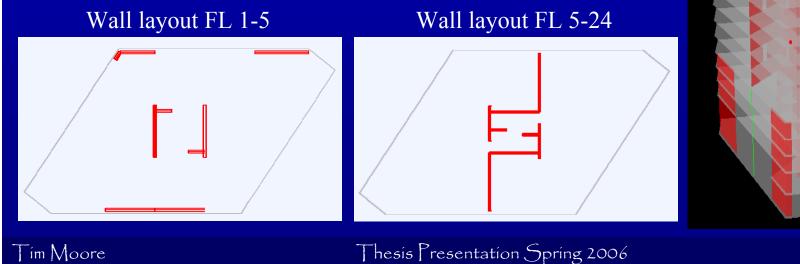
Lateral system design wind and seismic loads from ASCE 7 - 02

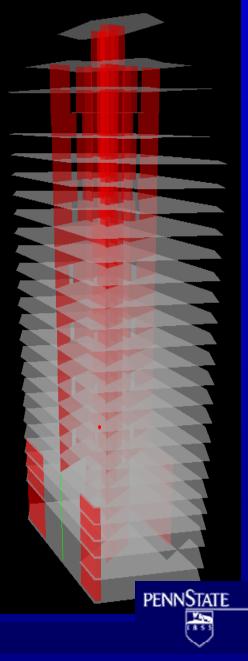
PENNSTATE

Recommendation

Erie on the Park

	Base Shear	Overturning Moment
Wind Case 1: N-S	986 k	151,500 ft-k
E-W	615 k	95,800 ft-k
Wind Case 2: N-S	740 k	113,600 ft-k
E-W	460 k	71,850 ft-k
Wind Case 3: N-S	740 k	113,600 ft-k
E-W	460 k	71,850 ft-k
Wind Case 4: N-S	555 k	85,300 ft-k
E-W	345 k	54,000 ft-k
Seismic – Walls:	350 k	73,500 ft-k
Seismic - Frame:	386 k	81,700 ft-k



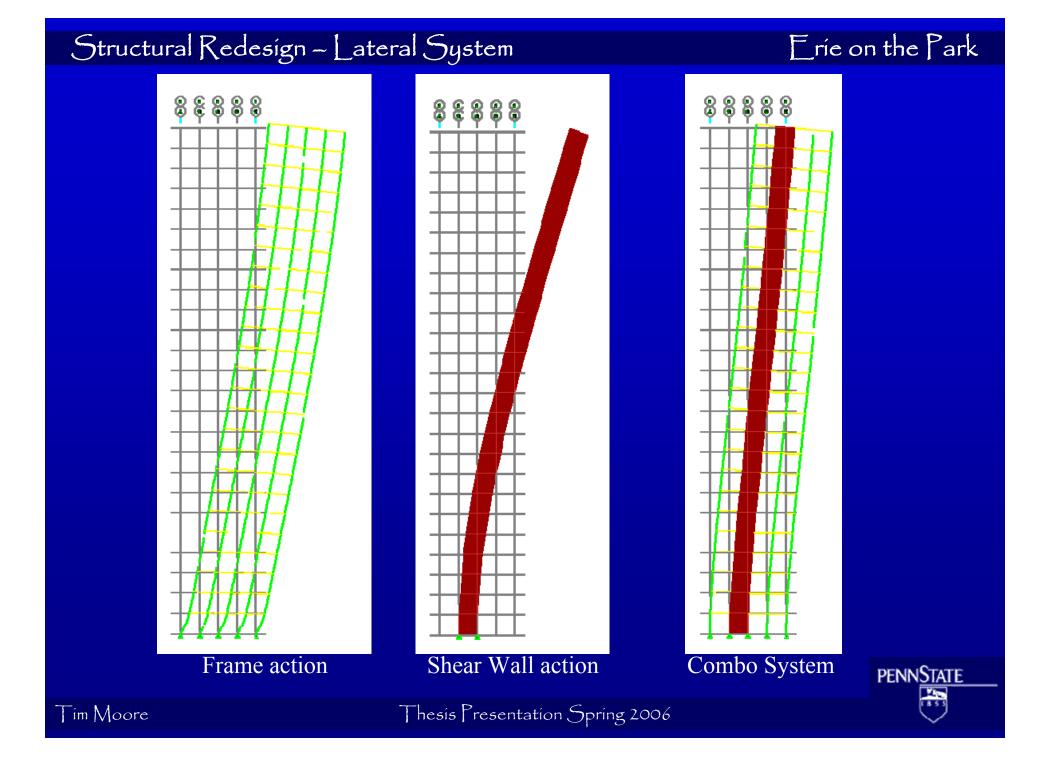

Tím Moore

Shear Wall System

- > Shear walls resist all of the lateral forces
- > Openings allowed in shear walls for door openings
- Lower floor wall layout due to parking garage
- > Upper floor wall layout around elevators and along column lines of initial brace system
- > Walls checked for shear, flexure, and overturning

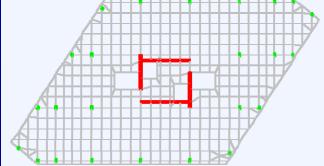
Designed for L/400 drift limit Roof CM displacement = 6.35" ~ L/550

Combination System


- ≻ Shear Walls
 - Deflect in bending
- > Moment Frame System
 - Deflects in Shear
- >Integrated system
 - Double curvature due to interaction between walls and frame

Reasons for a Combination System

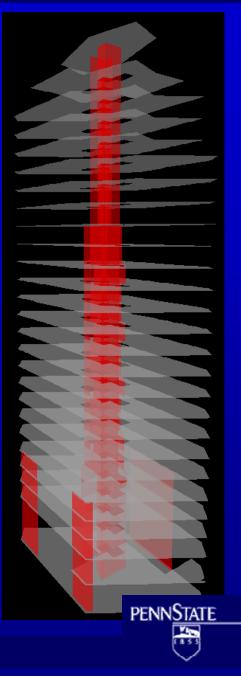
 Reduce the number of Shear Walls
 Moment Frame already exist because columns and slab poured integrally – minimal additional cost



Shear Wall/Slab-Frame System

- Shear walls and slab-frame work together to resist the lateral forces
- > Openings allowed in shear walls for door openings
- Lower floor wall layout still due to parking garage
- > Upper floor wall layout around elevator core
- > Walls checked for shear, flexure, and overturning

Designed for L/400 drift limit Roof CM displacement = 6.85" ~ L/510



Tím Moore

Wall layout FL 15-24

Thesis Presentation Spring 2006

Construction Management

Erie on the Park

<u>Original Steel System</u> – Braced Frames Cost:

Total (Incl. O&P) - \$5,370,000 Per Square Foot - \$25.21

Schedule:

28 Weeks (~7 months)

<u>PT Floor system</u> – Slab-Frame/Shear Walls Cost:

Total (Incl. O&P) - \$4,390,000 Per Square Foot - \$20.60 Schedule: 40 Weeks (~10 months)

Cost Savings - \$1,000,000 (18.25%) Construction Duration – 12 week increase!

Introduction

Building Professionals

Existing Structure

Columns

Floor System Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Introduction

Building Professionals

Existing Structure

Columns Floor System

Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

LEED Design

System Components

(2) 10,000 gal Cisterns
(1) 400 gal Compression Tank
(2) 5 HP Water pumps w/ controls
2500' Piping

Cost & Savings

Cost:

Total - \$55,700 Including O&P - \$64,000 (0.125%) Savings: 416,360 gal H₂O/yr (4.43%)

4.43% Water Utility Cost

LEED Points

 $\begin{array}{l} SS \ Credit \ 6.1-Stormwater \ Quantity \ Control \\ WE \ Credit \ 3.1-Reduce \ H_2O \ Usage \ by \ 20\% \end{array}$

- high efficiency fixtures
- reuse of greywater

PENNSTATE

Introduction

Building Professionals

Existing Structure

Columns

Floor System Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Introduction

Building Professionals

Existing Structure

Columns Floor System

Lateral System

Proposal

Structural Redesign

Gravity System Lateral System Cost & Schedule

LEED Design

Recommendation

Recommendation

	Original Design	<u>PT – Slab Frame</u>
Walking Vibration:	Yes	No
Cost (per sqft):	\$25.21	\$20.60
Construction Duration:	7 Months	10 Months
Weight of Structure:	19700 kips	27560 kips
Ceiling Mechanical Space:	12"	8"
Ease of Construction:	Easy	Moderate
Maintain Architecture:	Yes	Yes
Recommendation:	NO	YES

Recommendation

Why?!?

- Already a deep foundation
 - Less \$ to increase caisson diameters than switching from a shallow foundation
- > No exterior bracing
 - Save \$ on buying and installing custom cut windows
 - Save \$ on maintaining exposed steel members
- > Architecture
 - > Near complete freedom with floor plans
 - Shear walls confined to elevator core
 - > Unhindered views of Chicago skyline
 - > Exterior braces not part of the original design
- ≻ LEED
 - ➤ Only 1/8th % of overall cost
 - Charge more for rooms
 - > Better for the environment!

Design Professionals for your time and patience.

AE Professors for your wisdom and guidance.

Thank You!!

My family for their support.

My friends for keeping me sane.

