

# **Andrew Simone**

Æ Structural The Pennsylvania University



PHILADELPHIA, PA

## Technical Assignment 2 October 27, 2006



©Brawer & Hauptman Architects

FACULTY ADVISOR

Dr. Memari

Andrew Simone Structural Option Dr. Ali Memari, P.E. The Hub on Chestnut Philadelphia, PA October 27, 2006



#### **Executive Summary** Structural Technical Report 2

Within this report, are five (5) preliminary floor systems designed to functional as alternates for The HUB on Chestnut, located in Philadelphia, Pennsylvania. The original system is a post-tensioned two-way flat slab. The selected group consists of a hollow-core concrete slab, two-way flat plate, two-way flat plate with dropped panels, one-way concrete joist, and a composite steel beam. These options were selected to comply with the architectural and structure constraints of the designed building. With a repetitive design in levels 3 through 9, a critical bay was selected from the 7<sup>th</sup> level. This bay represents the largest spans and is nearly symmetrical in both directions. A few minor modification to the existing structural layout where incorporated to provide simplicity in the preliminary designs. Each alternate system was designed based on a 30' x 30' exterior bay. Several systems have been designed in accordance with applicable industry codes. Such codes include the 2002 CRSI Design Handbook, PCI Handbook 6<sup>th</sup> Edition, AISC 3<sup>rd</sup> Edition Manual, as well as manufacturers design manuals.

Many factors are considered in selecting a sustainable floor system. The system first and for most must provide a safe and adequate floor that can support all superimposed loading conditions. It is assumed the provided design aids have been incorporated to meet the requirements of deflection. Other criterion that affects the selection is constraints due to architectural aesthetics, fire rating, constructability, scheduling, and economical costs. The HUB is subjected to all of these features and each, along with others, will be incorporated into the selection process. Although five of the six systems are concrete structures, no bias opinions have been implemented towards either material. The application of a concrete design provides many alternatives that are suitable for the existing structure.

The alternative floor system will be selected using a points system. Each design will receive a point ranging from 1 to 6. The more efficient and desirable systems will be awarded a low value. The system which receives the lowest total point value will be considered to be the most applicable design. Each system can be evaluated and compared to other another based on their total tallied points.

Further research can involve several systems. Two feasible designs are the application of open-web joists and non-composite steel beams. Both designs are part of standard industry practice but were not incorporated for comparison. The composite steel beam was already considered. Although non-composite design may or may not be more economical, a lower floor depth will be controlled by composite design.



## **Table of Contents**

## Technical Report 2

| INTRODUCTION                        | 1 |
|-------------------------------------|---|
| POST-TENSIONED FLAT SLAB [EXISTING] |   |
| HOLLOW-CORE CONCRETE SLAB           | 4 |
| TWO-WAY FLAT SLAB                   | 4 |
| TWO-WAY FLAT SLAB WITH DROP PANELS  | 5 |
| ONE-WAY CONCRETE JOISTS             | 5 |
| COMPOSITE STEEL BEAM                | 6 |
| SYTEM SELECTION                     | 6 |
| CONCLUSION                          | 7 |

## Appendix

| Ι   | SOURCES [WORKS CITED]              |
|-----|------------------------------------|
| II  | HOLLOW-CORE CONCRETE SLAB          |
| III | TWO-WAY FLAT SLAB                  |
| IV  | TWO-WAY FLAT SLAB WITH DROP PANELS |
| V   | ONE-WAY CONCRETE JOISTS            |
| VI  | COMPOSITE STEEL BEAM               |
| VII | COST TABLE                         |

Andrew Simone Structural Option Dr. Ali Memari, P.E. The Hub on Chestnut Philadelphia, PA October 27, 2006



### **Structural Technical Report 2**

Study of Alternate Floor Systems

The objective of this study is to explore various flooring systems that can function as alternatives to the existing design. Within this report, the reader will be introduced to the five (5) systems that have been selected:

Hollow-Core Concrete Slab One-Way Concrete Joists Two-Way Flat Slab Two-Way Slab with Drop Panels Composite Steel Beam

Each flooring system provides both advantages and disadvantages when integrated with the admirations and requirements of the designers, as well as the owner. The systems will be compared among one another to provide a systematic selection process based on a 'points system'. The points system will provide a flooring system that will incorporate fundamental design criteria, construction restraints, architectural aesthetics, and economical costs.

For preliminary design purposes, the existing structural layout has been modified. The center column line has been shifted one-foot (12") in the East /West direction and the exterior columns have been transferred to the slab edge. No adjustments along each column line have implemented which will maintain their ambiguity within the partition walls. This slight revision will provide symmetry and simplicity in designing each system. In the illustration provided on the next page, the green area indicates the critical bay that will be analyzed in each flooring system.

The critical bay is located on the 7<sup>th</sup> level. This bay was selected for several reasons. The first reason is to account for the largest typical bay within the structure. Also, levels 3 through 9 provide the dominant common floor space. These seven levels serve as residential occupancy and have a redundancy in the architectural layout. The five flooring systems will be designed based on a typical 30' x 30' exterior bay required to support a superimposed dead and live load.

| Dead Loads | Partitions        | 20 | lb/ft <sup>2</sup>        | Live Loads Residen | tial Use  |
|------------|-------------------|----|---------------------------|--------------------|-----------|
|            | MEP               | 5  | lb/ft <sup>2</sup>        |                    |           |
|            | <u>Collateral</u> | 5  | <u>lb/ft</u> <sup>2</sup> | [ASCE7-02]         | 40 lb/ft² |
|            |                   | 30 | lb/ft <sup>2</sup>        |                    |           |





## POST-TENSIONED TWO-WAY SLAB [EXISTING]

The HUB on Chestnut has been designed and constructed using a two-way posttensioned floor system. The typical 9-inch slab, with 5,000 PSI high compressive strength concrete, is supported by three column lines oriented on each exterior edge and through the middle in the long geometry of the building. The column grid creates 12, nearly square bays, with #4 bars spaced continuously at 30" in each direction. Additional reinforcement (5 - #8 bars) is placed at the top and bottom in both directions where mild reinforcing is needed. As illustrated above, the post-tensioning strands are placed along each long column line and at intermediate bays. The typical tendon is a half-inch 270k seven-wire strand. The jacking forces range from 85k to 435k. The lower stressed tendons are spanned in the short direction.

A post-tensioned system is a welled designed system. The tensioning provides a strong concrete slab that can withstand a substantially higher loading than other conventional concrete slabs. A thinner slab thickness is one of the most popular attributes of post-tensioning. The tendons and anchors can be well hidden in the case of architectural examination. A creditable aspect is the elimination of fireproofing. Fireproofing is an additional cost and can be beneficial to the building budget if eliminated or reduced. Some disadvantages also come with this design. Post-tensioning can be less effective during construction. Each tendon must be carefully placed causing longer construction intervals. The tendons can not be stressed until the concrete has reached its setting strength which is detrimental to the schedule. Although this system is very effective, the cost is excessive compared to other systems. The tendons and high strength concrete are very costly along with the hiring of another subcontractor to provide the jacking. Please refer to Technical Report 1 for any concerns with the existing structure.





## HOLLOW-CORE CONCRETE SLAB

Precast concrete planks have several advantages. The most beneficial use of precast is the quick and steady installation. The product can arrive on-site and be put into place. No down time is required for concrete to be finished and set. The concrete planks, although hollow, can provide



an adequate rigidity to resist lateral forces. Precast products provide the consumer with a quality product that is fabricated in a controlled working environment and can be installed in all weather conditions. The floor system devised will incorporate the use of precasted 8" x 4' hollow-core slabs spanning 30'. The planks will be reinforced using  $6 - \frac{1}{2} ø$ , 270k tendons within 5,000 PSI concrete. An additional 2" topping of concrete will be used to created an even finished floor which is an aspect desired by the design architect. The U.L. J917 is adequate for a  $1-1\frac{1}{2}$  hour fire rating. The entire supporting structure was not designed. The use of concrete ledger and inverted T beams will be needed. These beams can be integrated into the wall system which will allow for an exposed total depth of 10 inches. Please see Appendix II for loading, selection, and application.

### TWO-WAY FLAT SLAB

A two-way flat concrete slab provides the architect with a uniform floor system. There are no edge beams, dropped panels, and other obstructions to hinder his/her design. Both architects and engineers are subjected to using free column spacing and placement. This selection uses a 10" thick slab with 4,000 PSI compressive strength and 60 KSI reinforcing. The formwork is simple and uniform which allows for quick construction. Another advantage is the consistent and continuous



reinforcing in each direction. This design does not include the use of shearheads. Some disadvantages come into play with flat monolithic slabs. The slab is very sustainable to punching shear. Usual design resists this action by creating large columns and thicker slabs. Again, the use of a thickness concrete slab eliminates the application of fireproofing and provides an adequate 2-hour rating. Please refer to Appendix III for loading, selection, and application.



## TWO-WAY FLAT SLAB WITH DROPPED PANELS

The two-way slab with dropped panels is an alternate to flat slabs and slabs with beams. The dropped panels provide the slab with the strength needed to eliminate obstructive deep supports. Also, the dropped panels can be incorporated for architectural aesthetics. This design will reduce the action of punching shear and can reduce the size of the support columns. Dropped panel systems will sustain higher loading than the flat plat system. The selected design



indicates the use of 10' x 10' dropped panels 9" in depth. The concrete consist of 4,000 PSI compressive strength and 60 KSI reinforcing. A total depth of the system is 11.5". With the extra time to construct the formwork, the cost of this selection can be much higher than flat plate design. A dropped panel design can cause construction delays in placing the reinforcement. The discontinuity may hinder the schedule and quality of the finished product. Please refer to Appendix IV for loading, selection, and application

### **ONE-WAY CONCRETE JOISTS**

One-way concrete joists are an alternate to steel joists. The cost is substantially less compared to the current high cost of steel. The monolithic slab and joist integration provides a much more rigid flooring system than the flat slab. A deep pan between joists can provide a cavity to mount and hide mechanical duct work. Several disadvantages are associated with one-way joists. The cumbersome formwork is not very economical but the finished product may be



worth the extra time and cost. The selected system consists of 10" deep ribs with a width of 6" spaced 26" on center using 4,000 PSI. A monolithic 3" topping is applied to provide a stable uniform deck finish. All concrete is cast-in-place with 60 KSI integrated continuously at the top and bottom. A joist-band beam has also been designed for this application. The design requests a 24.5" x 24" doubly-reinforced member to act as an interior support. Please refer to Appendix V for loading, selection, and application.



### COMPOSITE STEEL BEAM

A steel beam with a concrete slab-ondeck composite system is a very common floor design. This applied design consist two W10 x 26 joists spaced evenly at 10' on center within the 30' x 30' bay. The girder is sized as a W18 x 46. A 2" United Steel Deck metal decking, model UF2X, is in filled with 6.5" of 4,000 PSI normal weight



concrete. The total depth above top steel flange is 6.6". A W4 x W4 welded wire mesh is placed in the slab system. The composite action is constructed of 12 shear studs attached to each joist beam and 15 studs attached to the girder. To avoid any design change with the stair opening, the joists are run parallel to the long geometry of the structure. This arrangement is also more economical because all the girders will be run in the long direction in each bay. The application of a steel joist with slab-on-deck system provides a quick and steady installation over concrete. No lead time is needed to allow for an acceptable strength to be acquired as there is in concrete construction. In today's economy, the price of steel is significantly higher than that of concrete. This type of system also includes an application of sprayed fiberous concrete fireproofing.

### SYSTEM SELECTION

As previously stated in the introduction, a particular floor design will be selected based on a points system. The group of systems, including the existing, will be compared based on fundamental design criteria, construction restraints, architectural aesthetics, and economical costs. Each item will be scored in a particular section and issued a point value between 1 and 6. The most desirable design with be given a 1, the next feasible design will be issued a 2, and so on. Each system with be ranked in accordance by ascending order. No two systems can share a common value. After the numbers are tallied, the floor system with the least amount of points will be chosen as the paramount design.

| Table Key | Ι   | Post-Tensioned Flat Slab           |
|-----------|-----|------------------------------------|
|           | II  | Hollow-Core Concrete Slab          |
|           | III | Two-Way Flat Slab                  |
|           | IV  | Two-Way Flat Slab with Drop Panels |
|           | V   | One-Way Concrete Joists            |
|           | VI  | Composite Steel Beam               |
|           |     |                                    |



| System                 | Ι  | П  | Ш  | IV | V  | VI |
|------------------------|----|----|----|----|----|----|
| Economic Cost          | 5  | 1  | 2  | 4  | 5  | 6  |
| Floor Depth            | 1  | 3  | 2  | 4  | 5  | 6  |
| Loading Capacities     | 2  | 4  | 6  | 5  | 3  | 1  |
| Fire Proofing (Rating) | 4  | 3  | 2  | 1  | 5  | 6  |
| Design Flexibility     | 2  | 6  | 1  | 4  | 5  | 3  |
| Mechinical Placement   | 3  | 1  | 2  | 5  | 4  | 6  |
| Constructability       | 5  | 1  | 2  | 3  | 6  | 4  |
| Installation           | 4  | 1  | 2  | 3  | 6  | 5  |
| Time Elapse            | 5  | 1  | 3  | 4  | 6  | 2  |
| Weather Conditions     | 5  | 1  | 3  | 4  | 6  | 2  |
| Quality                | 4  | 1  | 3  | 5  | 6  | 2  |
| Aesthetics             | 2  | 3  | 1  | 4  | 6  | 5  |
| Maintenance            | 3  | 2  | 1  | 4  | 5  | 6  |
|                        |    |    |    |    |    |    |
| Total                  | 45 | 28 | 30 | 50 | 68 | 54 |

## Alternate Systems Evaluation Table

### CONCLUSION

In the above selections, six (6) floor systems have been devised to serve the gravity loading conditions for The HUB on Chestnut located in Philadelphia, Pennsylvania. In the group, five (5) systems are concrete support structures while the other is steel framing. No bias is directed towards any material. Concrete structures have several applicable systems that would be functional. Two other steel systems may be applicable with steel construction. One is the open-web steel joist, and the other is non-composite steel beam. A steel joist could be further researched but the non-composite should be denied due to depth constraints compared to the other systems.

Using the evaluation table, the hollow-core concrete slab is best suited to be an alternate system to the existing design. This floor system is most applicable in all areas of design. The next selection could be the two-way flat slab. The most undesirable system is the one-way concrete joists. The existing condition is a well designed floor system but is out ranked by the other options.

## APPENDIX I SOURCES [WORKS CITED]



## SOURCES

## - Hollow-Core Concrete Slab

Nitterhouse Concrete Products

Precast and Prestressed Concrete Design Handbook [PCI 6<sup>th</sup> Edition]

### - Two-Way Flat Slab

Concrete Reinforcing Steel Institute, 2002 [CRSI-02] Design Handbook

## - Two-Way Flat Slab with Drop Panels

Concrete Reinforcing Steel Institute, 2002 [CRSI-02] Design Handbook

## - One-Way Concrete Joists

Concrete Reinforcing Steel Institute, 2002 [CRSI-02] Design Handbook

## - Composite Steel Beam

American Institute of Steel Construction, 3<sup>rd</sup> Edition [AISC]

United Steel Deck, Inc. [USD] Deck Design Manual

## - Cost Analysis

Cost Works Database 2005

RS Means Assembly Costs 2006

## APPENDIX II HOLLOW-CORE CONCRETE SLAB



## **HOLLOW-CORE CONCRETE SLAB**

#### [In accordance with Nitterhouse Concrete]

#### Loading Conditions





Factored Load



*Select* 8" x 4' Span Deck® U.L. - J917 2" CIP Topping (6) Strand - ½ Φ, 270K

#### **103** PSF > **70** PSF

\*Load value is controlled by service stress











| FRIDICAL FR                                      | OFERITES                                                     |
|--------------------------------------------------|--------------------------------------------------------------|
| Comp                                             | osite                                                        |
| A' = 254 in. <sup>2</sup>                        | S' <sub>b</sub> = 547 in. <sup>3</sup>                       |
| l' = 2944 in <sup>4</sup>                        | S' <sub>t</sub> = 1124 in. <sup>3</sup> (At Top of SpanDeck) |
| Υ <sub>b</sub> = 5.38 in.                        | S'tt = 637 in. <sup>3</sup> (At Top of Topping)              |
| Y' <sub>t</sub> = 2.62 in. (To Top of SpanDeck)  | Wt. = 330 PLF                                                |
| Y <sup>*</sup> tt = 4.62 in. (To Top of Topping) | Wt. = 82.5 PSF                                               |



|                | 8" SPANDECK W/2" TOPPING |   |       |             |      |     |     |     | ALLOWABLE SUPERIMPOSED LOAD (PSF) |     |     |             |     |     |     |     |     |     |     |     |     |     |     |     |     |           |
|----------------|--------------------------|---|-------|-------------|------|-----|-----|-----|-----------------------------------|-----|-----|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------|
| STRAND PATTERN |                          |   |       | SPAN (FEET) |      |     |     |     |                                   |     |     |             |     |     |     |     |     |     |     |     |     |     |     |     |     |           |
| STRAD          | ND PA                    |   | RN .  | 10          | 11   | 12  | 13  | 14  | 15                                | 16  | 17  | 18          | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32        |
| Flexure        | 4                        | - | 1/2°ø | 795         | 718  | 650 | 590 | 500 | 426                               | 366 | 317 | 275         | 240 | 210 | 184 | 162 | 142 | 125 | 110 | 96  | 84  | 73  | 60  | 49  | 39  | $\sim$    |
| Shear          | 4                        | _ | 1/2"ø | 571         | 509  | 458 | 415 | 378 | 347                               | 320 | 296 | 275         | 257 | 240 | 222 | 199 | 178 | 160 | 145 | 133 | 126 | 115 | 103 | 93  | 84  | $^{\sim}$ |
| Flexure        | 6                        | - | 1/2"ø | 155         | 1040 | 945 | 859 | 732 | 629                               | 544 | 474 | <b>41</b> 6 | 366 | 324 | 287 | 256 | 228 | 204 | 183 | 164 | 147 | 132 | 118 | 103 | 90  | 77        |
| Shear          | в                        | - | 1/2 0 | 589         | 525  | 472 | 428 | 391 | 360                               | 331 | 308 | 286         | 266 | 249 | 235 | 220 | 207 | 195 | 184 | 175 | 160 | 145 | 132 | 120 | 110 | 100       |



This table is for simple spans and uniform loads, design data for any of these span—load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

## APPENDIX III TWO-WAY FLAT SLAB

30'



## **TWO-WAY SOLID FLAT SLAB**

#### [In accordance with CSRI 2002]

#### Loading Conditions



| FLA<br>(WIT                                        |                                              | ATE S                                  | SYSTI<br>RHEA                                               | EM<br>DS)                                     |                                               |                                               |                                                                                  | ſ                                                                  | SOUA                                                               | ARE EI                                                             | DGE F                                                              | PANEL                                                |                                                              |                                                      |
|----------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| SPAN                                               | Factored                                     |                                        | 1                                                           | Total F                                       | anel Mo                                       | oments                                        |                                                                                  | Reinf                                                              | orcing Ba                                                          | rs                                                                 |                                                                    |                                                      | End Panel                                                    |                                                      |
| Cols.                                              | posed<br>Load                                | Min. S<br>Colu                         | íquare<br>Imn                                               | -M                                            | +M                                            | M                                             | Co                                                                               | Each<br>Iumn Strip                                                 | ,                                                                  | Ea<br>Middle                                                       | ch<br>e Strip                                                      | \$                                                   | Steel (psf)                                                  |                                                      |
| (ft)                                               | (psf)                                        | (in.)                                  | γ,                                                          | (ft-kip)                                      | (ft-kip)                                      | (ft-kip)                                      | Tap<br>Ext +                                                                     | Bottom                                                             | Top<br>Int.                                                        | Bottom                                                             | Top                                                                | E                                                    | EC EC                                                        | anel<br>C                                            |
| (10 in.                                            | = TOTAI                                      | THICK                                  | NESS O                                                      | F SLA                                         | B)                                            |                                               |                                                                                  | Otatom                                                             |                                                                    |                                                                    |                                                                    |                                                      | 0.833 c                                                      | .f./s.f.                                             |
| 26<br>26<br>26<br>26<br>26<br>26<br>26<br>26       | 50<br>100<br>150<br>200<br>250<br>300<br>350 | 20<br>24<br>28<br>32<br>36<br>41<br>4/ | 0.762<br>0.724<br>0.685<br>0.677<br>0.612<br>0.613<br>0.610 | 115<br>136<br>157<br>175<br>192<br>205<br>216 | 230<br>272<br>313<br>350<br>384<br>411<br>431 | 309<br>367<br>421<br>471<br>517<br>553<br>580 | 12-# 5 4<br>12-# 5 5<br>14-# 5 4<br>16-# 5 5<br>12-# 6 2<br>13-# 6 3<br>19-# 5 3 | 12-# 5<br>14-# 5<br>9-# 7<br>10-# 7<br>20-# 5<br>9-# 8<br>10-# 8   | 15-# 6<br>13-# 7<br>12-# 8<br>13-# 8<br>15-# 8<br>16-# 8<br>17 # 8 | 10-# 5<br>10-# 5<br>11-# 5<br>12-# 5<br>10-# 6<br>11-# 6<br>11-# 6 | 10-# 5<br>10-# 5<br>10-# 5<br>10-# 5<br>11-# 5<br>12-# 5<br>9-# 6  | 2.72<br>2.96<br>3.33<br>3.70<br>4.11<br>4.47<br>4.72 | 2.74<br>2.98<br>3.37<br>3.73<br>4.14<br>4.52<br>4.77         | 2.74<br>2.96<br>3.42<br>3.83<br>4.29<br>4.71<br>4.96 |
| 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27       | 50<br>100<br>150<br>200<br>250<br>300<br>350 | 22<br>26<br>31<br>35<br>40<br>46<br>53 | 0.741<br>0.708<br>0.675<br>0.652<br>0.611<br>0.610<br>0.609 | 128<br>151<br>173<br>194<br>211<br>224<br>233 | 256<br>303<br>346<br>387<br>422<br>447<br>466 | 345<br>407<br>466<br>521<br>568<br>602<br>628 | 12-# 5 5<br>13-# 5 5<br>15-# 5 6<br>12-# 6 4<br>19-# 6 3<br>14-# 6 3<br>15-# 6 2 | 10-# 6<br>16-# 5<br>10-# 7<br>11-# 7<br>12-# 7<br>10-# 8<br>9-# 9  | 12-# 7<br>12-# 8<br>13-# 8<br>15-# 8<br>16-# 8<br>17-# 8<br>18-# 8 | 10-# 5<br>11-# 5<br>12-# 5<br>10-# 6<br>11-# 6<br>11-# 6<br>9-# 7  | 10-# 5<br>10-# 5<br>12-# 5<br>9-# 6<br>13-# 5<br>10-# 6            | 2.80<br>3.11<br>3.50<br>4.02<br>4.41<br>4.61<br>5.13 | 2.80<br>3.16<br>3.54<br>4.05<br>4.42<br>4.67<br>5.18         | 2.74<br>3.17<br>3.66<br>4.20<br>4.65<br>4.95<br>5.32 |
| 28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 50<br>100<br>150<br>200<br>250<br>300<br>350 | 24<br>28<br>33<br>37<br>44<br>52<br>59 | 0.706<br>0.722<br>0.665<br>0.668<br>0.616<br>0.609<br>0.608 | 142<br>168<br>192<br>214<br>230<br>241<br>252 | 283<br>335<br>383<br>428<br>460<br>483<br>504 | 381<br>451<br>516<br>576<br>619<br>650<br>678 | 13-# 5 4<br>15-# 5 6<br>17-# 5 5<br>19-# 5 6<br>20-# 5 5<br>15-# 6 3<br>16-# 6 2 | 11-#6<br>10-#7<br>20-#5<br>12-#7<br>10-#8<br>11-#8<br>11-#8        | 14-# 7<br>13-# 8<br>15-# 8<br>16-# 8<br>18-# 8<br>19-# 8<br>20-# 8 | 10-#5<br>12-#5<br>10-#6<br>11-#6<br>16-#5<br>12-#6<br>10-#7        | 10-# 5<br>10-# 5<br>11-# 5<br>13-# 5<br>10-# 6<br>10-# 6<br>11-# 6 | 2.86<br>3.33<br>3.80<br>4.24<br>4.49<br>4.90<br>5.25 | 2.89<br>3.36<br>3.81<br>4.26<br>4.56<br>4.97<br>5.32         | 2.95<br>3.50<br>3.94<br>4.50<br>4.82<br>5.18<br>5.46 |
| 29<br>29<br>29<br>29<br>29<br>29<br>29             | 50<br>100<br>150<br>200<br>250<br>300<br>360 | 26<br>31<br>36<br>42<br>50<br>57<br>65 | 0.730<br>0.665<br>0.644<br>0.611<br>0.609<br>0.608<br>0.607 | 156<br>184<br>210<br>233<br>248<br>261<br>270 | 312<br>369<br>421<br>465<br>496<br>521<br>541 | 420<br>496<br>566<br>627<br>667<br>702<br>728 | 14-# 5 7<br>16-# 5 5<br>13-# 6 4<br>15-# 6 2<br>16-# 6 2<br>23-# 5 4<br>17-# 6 2 | 12-# 6<br>14-# 6<br>12-# 7<br>10-# 8<br>11-# 8<br>10-# 9<br>10-# 9 | 15-# 7<br>14-# 8<br>16-# 8<br>18-# 8<br>19-# 8<br>20-# 8<br>21-# 8 | 11-# 5<br>13-# 5<br>11-# 6<br>16-# 5<br>10-# 7<br>10-# 7<br>10-# 7 | 11-# 5<br>11-# 5<br>13-# 5<br>10-# 6<br>11-# 6<br>11-# 6<br>16-# 5 | 3.03<br>3.49<br>4.03<br>4.39<br>4.91<br>5.22<br>5.43 | 3.05<br>3.53<br>4.08<br>4.45<br>4.97<br>5.29<br>5.50         | 3.07<br>3.69<br>4.14<br>4.69<br>5.11<br>5.59<br>5.88 |
| 30<br>30<br>30<br>30<br>30<br>30<br>30             | 50<br>100<br>150<br>200<br>250<br>300<br>350 | 28<br>33<br>39<br>47<br>55<br>63<br>71 | 0.699<br>0.692<br>0.642<br>0.616<br>0.608<br>0.607<br>0.607 | 171<br>203<br>231<br>251<br>267<br>280<br>290 | 343<br>406<br>502<br>534<br>560<br>579        | 462<br>546<br>622<br>676<br>718<br>754<br>780 | 15-# 5 6<br>18-# 5 7<br>20-# 5 6<br>16-# 6 4<br>17-# 6 2<br>18-# 6 1<br>19-# 6 0 | 10-# 7<br>12-# 7<br>10-# 8<br>11-# 8<br>10-# 9<br>10-# 9<br>13-# 8 | 17-# 7<br>15-# 8<br>18-# 8<br>19-# 8<br>21-# 8<br>22-# 8<br>23-# 8 | 12-# 5<br>10-# 6<br>16-# 5<br>10-# 7<br>10-# 7<br>14-# 6<br>20-# 5 | 11-# 5<br>12-# 5<br>10-# 6<br>11-# 6<br>11-# 6<br>12-# 6<br>12-# 6 | 3.21<br>3.77<br>4.21<br>4.74<br>5.14<br>5.35<br>5.58 | 3.23<br>3.78<br>4.26<br>4.79<br>5.20<br>5.42<br>5.68         | 3.26<br>3.86<br>4.41<br>4.95<br>5.46<br>5.77<br>6.00 |
| 31<br>31<br>31<br>31<br>31<br>31<br>31             | 50<br>160<br>150<br>200<br>250<br>300<br>350 | 30<br>35<br>43<br>52<br>61<br>69<br>78 | 0.707<br>0.705<br>0.655<br>0.609<br>0.608<br>0.608<br>0.605 | 188<br>222<br>250<br>270<br>287<br>300<br>310 | 376<br>444<br>500<br>541<br>573<br>600<br>620 | 506<br>597<br>673<br>728<br>772<br>808<br>835 | 17-# 5 7<br>14-# 6 6<br>16-# 6 5<br>17-# 6 4<br>18-# 6 3<br>19-# 6 1<br>20-# 6 D | 14-# 6<br>13-# 7<br>11-# 8<br>12-# 8<br>13-# 8<br>17-# 7<br>11 # 9 | 14-# 8<br>17-# 8<br>19-# 8<br>21-# 8<br>22-# 8<br>23-# 8<br>24-# 8 | 13-# 5<br>11-# 6<br>13-# 6<br>14-# 6<br>20-# 5<br>15-# 6<br>12-# 7 | 11-# 5<br>13-# 5<br>11-# 6<br>16-# 5<br>12-# 6<br>13-# 6<br>13-# 6 | 3.28<br>3.92<br>4.53<br>4.93<br>5.19<br>5.50<br>5.89 | 3.33<br>3.97<br>4.58<br>4.99<br>5.26<br>5.58<br>5.58<br>5.95 | 3.46<br>4.16<br>4.75<br>5.14<br>5.62<br>5.88<br>6.34 |

## APPENDIX IV TWO-WAY FLAT SLAB WITH DROP PANELS



## **TWO-WAY FLAT SLAB WITH DROP PANELS**

#### [In accordance with CSRI 2002]

#### Loading Conditions





 $f_{\rm c}$  = 4,000 PSI Grade 60 KSI

Drop Panels  $\rightarrow$  10' x 10' 9" Depth

| $f_c'$                  | = 4,0      | 000 psi            |                | FLAT SLAB SYSTEM |             |                    |                |                |            |                |                |                |                  |        |  |  |
|-------------------------|------------|--------------------|----------------|------------------|-------------|--------------------|----------------|----------------|------------|----------------|----------------|----------------|------------------|--------|--|--|
| Gra                     | ade 60     | ) Bars             |                |                  | SC          | QUARE              | EDGE           | PANE           | L<br>Beams | With           | Drop           | Panels         | 9                |        |  |  |
|                         | Factored   |                    | 1              |                  |             | B                  | EINEO          |                | PADE       | (E )M()        |                | 5.4            | OMENTS           |        |  |  |
| SPAN                    | Superim-   | Square Dr          | rop            | Souare (         | )<br>Column |                    | EINFOR         |                | DANS       | (E. VV.)       |                | IVI            | ONEN             |        |  |  |
| $C_{1} = \int_{-2}^{2}$ | Load       | Panel<br>Deoth : M | /idth          | Size             |             | Ton                | umini Strip (  | Ton            | Middle     | Top            | Total<br>Steel | Edge           | Bot. (+)         | Int.   |  |  |
| (ft)                    | (psf)      | (in.)              | (ft)           | (in.)            | $Y_f$       | Ext. +             | Bottom         | Int.           | Bottom     | Int.           | (psf)          | (ft-k)         | (ft-k)           | (ft-k) |  |  |
|                         |            |                    | h =            | = 11.5 in        | . = TOT     | AL SLAB            | DEPTH          | BETWE          | EN DROF    | PANEL          | .s             |                |                  |        |  |  |
| 29                      | 100        | 7.00               | 9.67           | 12               | 0.786       | 13-#5 3            | 11-#7          | 14-#6          | 10-#6      | 12-#5          | 2.94           | 225.5          | 451.0            | 607.1  |  |  |
| 29                      | 200        | 9.00               | 9.67           | 16               | 0.673       | 13-#5 3            | 11-#8          | 16-#6          | 10-#7      | 15-#5          | 3.61           | 290.2          | 580.4            | 781.3  |  |  |
| 29                      | 400        | 9.00               | 9.67<br>9.67 i | 21               | 0.640       | 14-#5 4<br>15.#5 3 | 11-#9<br>13_#9 | 15-#7          | 12-#7      | 10-#7<br>15-#6 | 4.50           | 355.0<br>420.6 | 710.0 ·<br>841.2 | 955.8  |  |  |
| 29                      | 500        | 11.00 1            | 1.60           | 23               | 0.707       | 17-#5 3            | 15-#9          | 14-#8          | 12-#8      | 10-#8          | 5.87           | 485.4          | 970.8            | 1306.9 |  |  |
| 30                      | 100        | 9.00 1             | 0.00           | 12               | 0.698       | 14-#5_1            | 12-#7          | 14-#6          | 15-#5      | 13-#5          | 2.99           | 251.2          | 502.3            | 676.2  |  |  |
| 30                      | 200        | 9.00 1             | 0.00           | 16               | 0.721       | 14-#5 3            | 12-#8          | 18-#6          | 14-#6      | 16-#5          | 3.79           | 322.4          | 644.9            | 868.1  |  |  |
| 30                      | 300        | 11.00 1            | 0.00           | 19               | 0.636       | 14-#5 3            | 12-#9          | 15-#7          | 10-#8      | 20-#5          | 4.61           | 395.5          | 791.0            | 1064.8 |  |  |
| 30                      | 400<br>500 | 11.00 1            | 2.00 i         | 25               | 0.698       | 19-#5-6            | 17-#9          | 14-#8          | 12-#8      | 10-#8          | 5.55<br>6.52   | 467.8<br>536.9 | 935.7 1          | 1445.6 |  |  |
| 24                      | 100        | 0.00               | 0.92           | 10               | 0.740       | 14 #5 0            | 10 #0          | 10 #0          | 10.46      | 14.45          | 0.46           | 077.9          | 555 S            | 747.0  |  |  |
| 31                      | 200        | 9.00 1             | 0.33           | 16               | 0.740       | 14-#5 5            | 11-#9          | 15-#0          | 12-#0      | 13-#6          | 4.17           | 357.0          | 713.9            | 961.1  |  |  |
| 31                      | 300        | 11.00 1            | 0.33           | 19               | 0.678       | 16-#5 3            | 17-#8          | 22-#6          | 11-#8      | 12-#7          | 5.01           | 438.1          | 876.2            | 1179.5 |  |  |
| 31                      | 400        | 11.00 1            | 2.40           | 23               | 0.749       | 18-#5 6            | 16-#9          | 15-#8          | 13-#8      | 11-#8          | 5.89           | 517.8          | 1035.7           | 1394.2 |  |  |
| 31                      | 500        | 11.00              | 2.40           | 20               | 0.746       | 10-#0 4            | 19-#9          | 14-#9          | 12-#9      | 10-#7          | 0.92           | 200.0          | 1176.9           | 1584.3 |  |  |
| 32                      | 100        | 9.00 1             | 0.67           | 12               | 0.803       | 15-#5 5            | 15-#7          | 17-#6          | 13-#6      | 11-#6          | 3.36           | 306.2          | 612.4            | 824.3  |  |  |
| 32                      | 200        | 11.00   1          | 0.67           | 16               | 0.651       | 15-#5 2            | 12-#9          | 15-#7          | 13-#7      | 14-#6          | 4.31           | 394.9          | 789.8            | 1063.2 |  |  |
| 32                      | 400        | 11.00 1            | 2.80           | 26               | 0.718       | 20-#5 5            | 18-#9          | 17-#8          | 12-#9      | 12-#8          | 6.49           | 403.7          | 1134.4           | 1527.1 |  |  |
| 32                      | 500        | 11.00 1            | 2.80           | 31               | 0.692       | 16-#6 3            | 21-#9          | 15-#9          | 13-#9      | 11-#9          | 7.31           | 639.5          | 1278.9           | 1721.6 |  |  |
| 33                      | 100        | 11.00 . 1          | 1.00 :         | 12               | 0.710       | 15-#5 2            | 22-#6          | 17-#6          | 20-#5      | 12-#6          | 3.48           | 337.7          | 675.5            | 909.3  |  |  |
| 33                      | 200        | 11.00 1            | 1.00           | 16               | 0.754       | 15-#5 5            | 17-#8          | 16-#7          | 11-#8      | 12-#7          | 4.63           | 434.4          | 868.8            | 1169.5 |  |  |
| 33                      | 300        | 11.00   1          | 1.00           | 22               | 0.734       | 19-#5 5            | 17-#9          | 15-#8          | 13-#8      | 11-#8          | 5.84           | 528.0          | 1056.0           | 1421.5 |  |  |
| 33                      | 400        | 1.00               | 5.20           | 29               | 0.711       | 22-#J 0            | 20-#8          | 10-#0          | 10-#8      | 10-#0          | 0.03           | 010.2          | 1292.4           | 1059.0 |  |  |
| 34                      | 100        | 11.00 1            | 1.33           | 12               | 0.762       | 16-#5 4            | 14-#8          | 26-#5          | 12-#7      | 19-#5          | 3.77           | 370.1          | 740.2            | 996.4  |  |  |
| 34                      | 300        | 11.00 1            | 1.33           | 24               | 0.752       | 17-#5 6<br>20-#5 R | 18-#8          | 18-#/<br>17-#8 | 12-#8      | 13-#7          | 4.84<br>6.19   | 473.9<br>576.4 | 947.8<br>1152.8  | 1275.9 |  |  |
| 34                      | 400        | 11.00 1            | 3.60           | 31               | 0.689       | 17-#6 3            | 21-#9          | 16-#9          | 14-#9      | 14-#8          | 7.18           | 667.9          | 1335.8           | 1798.2 |  |  |
|                         |            |                    |                |                  |             |                    |                |                |            |                |                |                |                  |        |  |  |

## APPENDIX V ONE-WAY CONCRETE JOISTS



## **ONE-WAY CONCRETE JOIST**

#### [In accordance with CSRI 2002]



End Span Condition 20" Form + 6" Ribs @ 26" c.-c.

Factored Load  $\rightarrow$  **118** PSF > **110** PSF

Joist System  $\rightarrow$  10" Deep Rib + 3" Top Slab  $\rightarrow$  Total Depth – 13"

Reinforcement (E.W.) Top Bars  $\rightarrow #5 @ 8.5$ " o.c.

Self Weight  $\rightarrow$  70 PSF (8-13)

Bottom Bars  $\rightarrow$  (1) #5, (1) #6 per rib

```
Total Steel \rightarrow 1.46 PSF
```



Andrew Simone

nub

| STAN<br>ONE-WAY<br>MULTIPL                                                                                                | idard<br>' Joist<br>.e Spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs 🗆<br>NS | FACT     | 20<br>ORED      | " Form<br>USAB     | s + 6"<br>SLE SU    | Rib @ :<br>PERIMF | 26" c<br>POSED | C. 121<br>LOAE | ) (PSF)     | $f_{v}^{*}$         | = 4,0<br>= 60,0     | 00 psi<br>00 psi |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------------|--------------------|---------------------|-------------------|----------------|----------------|-------------|---------------------|---------------------|------------------|
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |                 | 101 Dec            | p Bib +             | 3.0° Top \$       | 5lab - 1       | 3.01 Tota      | Depth       | _                   |                     |                  |
| TOP<br>BARS                                                                                                               | Size<br>(it)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 4<br>11  | #4<br>85 | # 4             | # 5<br>8.5         | # 6<br>10.5         | End               | # 4<br>10      | #4<br>8        | # 5         | # 6<br>11           | #6<br>9             | Int.             |
| BOTTOM                                                                                                                    | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #4<br>#4   | #4       | #5<br>#5        | #5<br>#6           | #6<br>#6            | Span<br>Defl.     | #3             | #4             | # 4         | #5                  | #5                  | Span<br>Defi.    |
| Steel (psf)                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76         | .97      | 1.19            | 1.46               | 1.73                | Coeff. (3)        | .81            | 1.04           | 1.33        | 1.66                | 2.00                | Coeff.<br>(3)    |
| CLEAR S                                                                                                                   | PAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          | EN              | D SPAI             | K                   |                   |                |                | INTER       | OR SP/              | AN                  |                  |
| 18-0                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 229        | 316      | 403             | 420*               | 427                 | .913              | 272            | 378            | 470*        | 476*                | 487*                | .562             |
| 19'0                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>196   | 0<br>273 | 0<br>352        | 503<br>385*        | 601×<br>391×        | 1.133             | 0<br>234       | 0<br>329       | 504<br>434* | 631<br>439*         | 691<br>449*<br>640* | .697             |
| 20.0                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 167<br>0   | 237<br>0 | 308<br>0        | 355*<br>389        | 359*<br>471         | 1.391             | 201<br>0       | 287<br>0       | 389         | 407*                | 416*<br>596*        | .856             |
| 21'-0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142<br>0   | 206      | 270<br>0<br>237 | 328*<br>343<br>304 | 332*<br>418<br>308* | 2.037             | 174<br>0       | 252            | 344<br>0    | 378*<br>438<br>352* | 386*<br>544<br>360* | 1.041            |
| 23 0                                                                                                                      | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102        | 0        | 209             | 0<br>270           | 372 286*            | 2.433             | 128            | 0<br>193       | 270         | .390<br>329*        | 487<br>336*         | 1.497            |
| 24.0                                                                                                                      | p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>86    | 134      | 0<br>184        | 240                | 332<br>266*<br>207  | 2.885             | 110            | 0<br>170       | 240         | 349<br>309*         | 437<br>315*         | 1.775            |
| 25-0                                                                                                                      | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71         | 116      | 162<br>0        | 213<br>0           | 249*<br>266         | 3.397             | 93             | 149<br>0       | 214<br>0    | 280                 | 295*<br>355         | 2.090            |
| 26'-0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59<br>0    | 100      | 142             | 190                | 233*                | 3.974             | 79             | 130            | 190<br>0    | 251                 | 278*                | 2.445            |
| 28-0                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47         | 0<br>73  | 125             | 150                | 192                 | 5.345             | 0              | 0 98           | 150         | 226                 | 290                 | 3.289            |
| 29'-0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0<br>61  | 0<br>95         | 0<br>133           | 0<br>172            | 6.150             | 0<br>44        | 0<br>85        | 0<br>134    | 0<br>183            | 263<br>233°         | 3.785            |
| 30'-0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 51<br>0  | 82<br>0         | 118<br>0           | 155<br>0            | 7.043             | 0              | 73             | 118<br>0    | 164<br>0            | 238                 | 4.334            |
| 31'-0                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 41<br>0  | 71<br>0         | 104<br>0           | 138<br>0            | 8.030             | 1              | 62<br>0        | 105<br>0    | 148<br>0            | 196<br>0            | 4.942            |
| <ul> <li>(1) For g</li> <li>(2) First</li> <li>(3) Comp<br/>(n/2)</li> <li>(4) Exclusion</li> <li>(4) Controll</li> </ul> | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |            |          |                 |                    |                     |                   |                |                |             |                     |                     |                  |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRO        | OPERT    | IES FO          | DR DE              | SIGN (              | CONC              | RETE .         | 47 CF,         | /SF) (4     | 0                   |                     |                  |
| NEGATIVE N<br>STEEL AREA                                                                                                  | (SQ. IN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .47        | .61      | .74             | .95                | 1.09                |                   | .52            | .65            | .85         | 1.04                | 1.27                |                  |
| STEEL % (UN                                                                                                               | IFORM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .58        | .75      | .91             | 1.16               | 1.34                |                   | .63            | .79            | 1.04        | 1.28                | 1.57                |                  |

| and the second second | PROPERTIES FOR DESIGN (CONCRETE .47 CF/SF) (4) |      |      |      |      |   |      |      |      |      |      |  |  |  |
|-----------------------|------------------------------------------------|------|------|------|------|---|------|------|------|------|------|--|--|--|
| NEGATIVE MOMENT       |                                                |      |      |      |      |   |      |      |      |      |      |  |  |  |
| STEEL AREA: (SQ. IN.) | .47                                            | .61  | .74  | .95  | 1.09 |   | .52  | .65  | .85  | 1.04 | 1.27 |  |  |  |
| STEEL % (UNIFORM)     | .58                                            | .75  | .91  | 1.16 | 1.34 |   | .63  | .79  | 1.04 | 1.28 | 1.57 |  |  |  |
| (TAPERED)             | .37                                            | .47  | .58  | .74  | .85  |   | .40  | .50  | .66  | .82  | 1.00 |  |  |  |
| EFF. DEPTH, IN.       | 11.8                                           | 11.8 | 11.8 | 11.7 | 11.6 |   | 11.8 | 11.8 | 11.7 | 11.6 | 11.6 |  |  |  |
| ICR/IGR               | .165                                           | .203 | .235 | .278 | .304 |   | .178 | .212 | .256 | .294 | .338 |  |  |  |
| POSITIVE MOMENT       |                                                |      |      |      |      |   |      |      |      |      |      |  |  |  |
| STEEL AREA (SQ. IN.)  | .40                                            | .51  | .62  | .75  | .88  | i | .31  | .40  | .51  | .62  | .75  |  |  |  |
| STEEL %               | .13                                            | .17  | .20  | .25  | .29  |   | .10  | .13  | .17  | .20  | .25  |  |  |  |
| EFF. DEPTH. IN.       | 11.8                                           | 11.7 | 11.7 | 11.6 | 11.6 | 1 | 11.8 | 11.8 | 11.7 | 11.7 | 11.6 |  |  |  |
| FICR/IGR              | .176                                           | .216 | .257 | .301 | .345 |   | .139 | .176 | .216 | .257 | .301 |  |  |  |
|                       |                                                |      |      |      | 1    |   |      |      |      |      |      |  |  |  |

|                   |                                                     |                             | 3-Inch 1                     | Top Slab                   |                            |                                           |                                                     |                             | 4.5-Inch                                | Top Slab                   |                             |                                           |
|-------------------|-----------------------------------------------------|-----------------------------|------------------------------|----------------------------|----------------------------|-------------------------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------|----------------------------|-----------------------------|-------------------------------------------|
| (2)<br>Joist      | Gross<br>Area <sup>(3)</sup><br>(in. <sup>2</sup> ) | Wt. <sup>(4)</sup><br>(psf) | Y <sub>cg</sub> (3)<br>(in.) | <sub>g</sub> (3)<br>(in.4) | +M <sub>cr</sub><br>(ft-k) | –M <sub>or</sub> <sup>(3)</sup><br>(ft-k) | Gross<br>Area <sup>(3)</sup><br>(in. <sup>2</sup> ) | Wt. <sup>(4)</sup><br>(psf) | Y <sub>cg</sub> <sup>(3)</sup><br>(in.) | <sub>g</sub> (3)<br>(in.4) | +M <sub>cr.</sub><br>(ft-k) | -M <sub>cr</sub> <sup>(3)</sup><br>(ft-k) |
| 0 5 00            | 120.3                                               | 60                          | 7.49                         | 1,104                      | 5.8                        | 12.4                                      | 157.8                                               | 79                          | 8.50                                    | 1,630                      | 7.6                         | 16.1                                      |
| 8 - 5 + 20        | 152.3                                               |                             | 6.75                         | 1,582                      |                            | 14.7                                      | 189.8                                               |                             | 7.74                                    | 2.340                      |                             | 19.4                                      |
| 0.0.00            | 131.3                                               | 63                          | 7.32                         | 1,254                      | 6.8                        | 13.5                                      | 170.3                                               | 82                          | 8.33                                    | 1,852                      | 8.8                         | 17.6                                      |
| 8 + 6 + 20        | 163.3                                               |                             | 6.67                         | 1,709                      |                            | 15.6                                      | 202.3                                               |                             | 7.65                                    | 2,528                      |                             | 20.6                                      |
| 10.5              | 133.3                                               | 67                          | 8.76                         | 1.826                      | 8.2                        | 17.0                                      | 170.8                                               | 85                          | 9.86                                    | 2,561                      | 10.3                        | 21.8                                      |
| $10 \pm 5 \pm 20$ | 173.3                                               |                             | 7.89                         | 2,594                      |                            | 20.1                                      | 210.8                                               |                             | 8.93                                    | 3,659                      |                             | 26.0                                      |
| 10 . 0 . 00       | 146.3                                               | 70                          | 8.56                         | 2,069                      | 9.6                        | 18.4                                      | 185.3                                               | 89                          | 9.65                                    | 2,906                      | 11.9                        | 23.7                                      |
| 10 + 6 + 20       | 186.3                                               |                             | 7.80                         | 2,801                      |                            | 21.3                                      | 225.3                                               |                             | 8.83                                    | 3,951                      |                             | 27.5                                      |
| 40 5 00           | 147.0                                               | 74                          | 9.99                         | 2,799                      | 11.1                       | 22.1                                      | 184.5                                               | 92                          | 11.16                                   | 3,797                      | 13.4                        | 28.1                                      |
| 12 + 5 + 20       | 195.0                                               |                             | 9.01                         | 3,951                      |                            | 26.1                                      | 232.5                                               |                             | 10.10                                   | 5,388                      |                             | 33.3                                      |
| 10.0.00           | 162.0                                               | 78                          | 9.76                         | 3.165                      | 12.8                       | 23.9                                      | 201.0                                               | 97                          | 10.92                                   | 4,300                      | 15.6                        | 30.5                                      |
| 12 - 6 + 20       | 210.0                                               |                             | 8.90                         | 4,264                      |                            | 27.6                                      | 249.0                                               |                             | 9.97                                    | 5,815                      |                             | 35.2                                      |
| 0 5 00            | 150.3                                               | 54                          | 7.89                         | 1,223                      | 6.1                        | 15.5                                      | 202.8                                               | 72                          | 8.89                                    | 1,813                      | 8.1                         | 19.8                                      |
| 8 + 5 + 30        | 190.3                                               |                             | 7.07                         | 1,914                      |                            | 19.3                                      | 242.8                                               |                             | 8.08                                    | 2,825                      |                             | 25.3                                      |
| 0.1.00            | 161.3                                               | 56                          | 7.73                         | 1,393                      | 7.1                        | 16.8                                      | 215.3                                               | 75                          | 8.74                                    | 2,058                      | 9.3                         | 21.6                                      |
| 8 - 6 + 30        | 201.3                                               |                             | 6.99                         | 2,051                      |                            | 20.2                                      | 255.3                                               |                             | 7.99                                    | 3,028                      |                             | 26.6                                      |
| 10.0              | 163.3                                               | 58                          | 9.26                         | 2,032                      | 8.7                        | 21.5                                      | 215.8                                               | 77                          | 10.35                                   | 2,841                      | 10.8                        | 27.1                                      |
| 10 + 5 - 30       | 213.3                                               |                             | 8.26                         | 3,145                      |                            | 26.2                                      | 265.8                                               |                             | 9.35                                    | 4,422                      |                             | 33.9                                      |
| 10 0 00           | 176.3                                               | 61                          | 9.06                         | 2,307                      | 10.1                       | 23.1                                      | 230.3                                               | 80                          | 10.16                                   | 3,227                      | 12.6                        | 29.4                                      |
| 10 - 6 + 30       | 226.3                                               |                             | 8.16                         | 3,366                      |                            | 27.5                                      | 280.3                                               |                             | 9.24                                    | 4.737                      |                             | 35.6                                      |
| 10 5 . 00         | 177.0                                               | 63                          | 10.58                        | 3,128                      | 11.7                       | 28.0                                      | 229.5                                               | 82                          | 11.77                                   | 4,219                      | 14.2                        | 35.2                                      |
| 12 - 5 + 30       | 237.0                                               |                             | 9.42                         | 4,790                      |                            | 34.0                                      | 289.5                                               |                             | 10.57                                   | 6,520                      |                             | 43.5                                      |
| 40.000            | 192.0                                               | 67                          | 10.34                        | 3,541                      | 13.5                       | 30.1                                      | 246.0                                               | 85                          | 11.53                                   | 4,783                      | 16.4                        | 38.0                                      |
| 12 + 6 + 30       | 252.0                                               |                             | 9.31                         | 5,124                      |                            | 35.6                                      | 306.0                                               |                             | 10.45                                   | 6,979                      |                             | 45.6                                      |
|                   | 191.3                                               | 68                          | 11.86                        | 4,549                      | 15.2                       | 35.0                                      | 243.8                                               | 87                          | 13.13                                   | 5,986                      | 18.0                        | 44.1                                      |
| 14 - 5 + 30       | 261.3                                               |                             | 10.56                        | 6.905                      |                            | 42.4                                      | 313.8                                               |                             | 11.76                                   | 9,174                      |                             | 53.8                                      |
| 14 6 1 00         | 208.3                                               | 72                          | 11.59                        | 5,135                      | 17.5                       | 37.5                                      | 262.3                                               | 91                          | 12.86                                   | 6,773                      | 20.8                        | 47.4                                      |
| 14 - 6 + 30       | 278.3                                               |                             | 10.44                        | 7,382                      |                            | 44.4                                      | 332.3                                               |                             | 11.62                                   | 9,812                      |                             | 56.4                                      |
| 10.00             | 225.3                                               | 78                          | 12.81                        | 7,127                      | 22.0                       | 45.5                                      | 279.3                                               | 97                          | 14.15                                   | 9,238                      | 25.8                        | 57.5                                      |
| 16 + 6 + 30       | 305.3                                               |                             | 11.55                        | 10,197                     |                            | 54.1                                      | 359.3                                               |                             | 12.78                                   | 13,295                     |                             | 68.1                                      |
| 10 7 00           | 244.3                                               | 83                          | 12.55                        | 7,890                      | 24.9                       | 48.3                                      | 299.8                                               | 101                         | 13.88                                   | 10,246                     | 29.2                        | 61.2                                      |
| 16 + 7 + 30       | 324.3                                               |                             | 11.43                        | 10.844                     |                            | 56.6                                      | 379.8                                               |                             | 12.64                                   | 14,137                     |                             | 71.1                                      |
| 00 0 00           | 261.3                                               | 91                          | 15.18                        | 12,469                     | 32.5                       | 63.0                                      | 315.3                                               | 109                         | 16.65                                   | 15.768                     | 37.4                        | 79.4                                      |
| 20 - 6 - 30       | 361.3                                               |                             | 13.74                        | 17,741                     |                            | 75.8                                      | 415.3                                               |                             | 15.05                                   | 22,454                     |                             | 93.9                                      |
| 00 7 00           | 284.3                                               | 96                          | 14.88                        | 13.769                     | 36.6                       | 67.0                                      | 339.8                                               | 115                         | 16.33                                   | 17,433                     | 42.2                        | 84.3                                      |
| 20 - 7 + 30       | 384.3                                               |                             | 13.61                        | 18,864                     |                            | 79.4                                      | 439.8                                               |                             | 14.89                                   | 23,861                     |                             | 98.1                                      |



## **JOIST-BAND BEAM**

#### [In accordance with CSRI 2002]

#### Loading Conditions

| Dead Loads              |         |                    |
|-------------------------|---------|--------------------|
| Partitions              | 20      | lb/ft <sup>2</sup> |
| MEP                     | 5       | lb/ft <sup>2</sup> |
| Collateral              | 5       | lb/ft <sup>2</sup> |
| <u>Joists</u>           | 70      | lb/ft <sup>2</sup> |
|                         | 100     | lb/ft <sup>2</sup> |
| Live Loads              |         |                    |
| Level $7 \rightarrow 1$ | Residen | tial               |
|                         | 40 lb   | /ft²               |
|                         |         |                    |

Superimposed Service Load

 $W_u = 1.4\text{DL} + 1.7\text{LL}$ = 1.4(100 lb/ft<sup>2</sup>) + 1.7(40 lb/ft<sup>2</sup>) = 208 PSF

Loading per Foot  $\rightarrow$  (30 ft)(208 lb/ft<sup>2</sup>) = 6240 lb/ft

CRSI Design Aid (12-105)

Select Clear Span – 30'-0" 24.5" Depth 24" Width

 $f_{\rm c}$  = 4,000 PSI Grade 60 KSI

 $\begin{array}{ccc} L_{\rm 1}={\rm 30'} & \textbf{9.10} > \textbf{6.24} & {\rm Self\text{-Weight}} \to {\rm 1.4(150\ lb/ft^3)(24.5/12)(24/12)} \\ & 858\ lb/ft \end{array}$ 

*Check:* **9.10** > **7.10** 





nub

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ξŝ                 | 2      | 6 e e                          | 187          | 192            | 157          | 143          | 125          | 128   | 106           | <u>8</u>             | 66       | 94                                                                                               | 685                  | 74               |                                       | ment                                 | C x<br>load                 | 16                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|--------------------------------|--------------|----------------|--------------|--------------|--------------|-------|---------------|----------------------|----------|--------------------------------------------------------------------------------------------------|----------------------|------------------|---------------------------------------|--------------------------------------|-----------------------------|-----------------------------------------------------------------|
| In the second se | -φW<br>Ψ           | -@M"-  | (6)<br>R-kip                   | 281<br>368   | 350            | 547          | 288          | 377          | 299   | 787           | 956<br>1261          | 562      | CH0<br>102                                                                                       | 972                  | 1164<br>1533     | · · · · · · · · · · · · · · · · · · · | esign mor<br>angular sei             | n (in.) =<br>tabulated      | w aken as w/                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        | STEEL<br>WGT<br>Ib.            | 737<br>1345  | 1022<br>16/14  | 1621         | 1899<br>2581 | 1015         | 1380  | 2282          | 3725<br>3725         | 1478     | 5 <u>5</u> 5                                                                                     | 692                  | 3499<br>5174     |                                       | M <sub>n</sub> are d<br>es for rect  | there w =                   | load" is ta                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 34 ft  | N, sq.                         | - 8          | 1 00           |              |              | - 20         |       | 2 1 2         | 2 ' 2                | , r<br>c |                                                                                                  | 2 3.<br>2 3.         | 3.6              |                                       | d — ф                                | elastic<br>≜                | service                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _"_"   | $\varphi_{f_n}^{}$             | 18           | 2 ⇔ Ω          | ; ∞ ;        | 3 8 12       | 88           | 388   | 285           | <u> 2</u> 29 23      | 48<br>89 | 2 49 ș                                                                                           | 285                  | 6 6 5            |                                       | M, an<br>hgth c                      | dspan<br>1.6) ×<br>1. f. ir | erage                                                           |
| BEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | SPAN,  | STIR.<br>TIES<br>(5)           | 123H<br>215H | 153H<br>715H   | 174H         | 184H<br>295E | 123H         | 143H  | 174H          | 285F<br>185H<br>345D | 133H     | 153H                                                                                             | 164H<br>164H<br>206F | 175H<br>175B     |                                       | (6) +¢<br>stre<br>b × d              | ¥888                        | .A.                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        | LOAD<br>k/ft                   | 3.5          | 4.9            | 1.7          | 8.1          | 5.2          | 6.6   | 10.6          | 12.0                 | 7.8      | 9.7                                                                                              | 12.7                 | 15.5             | :                                     | 12-4. At<br>rups) of                 | NDED                        |                                                                 |
| 4 <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        | STEEL<br>WGT<br>Ib.            | 700          | 962            | 1526         | 1789<br>2454 | 962<br>1645  | 1308  | 2149          | 2937<br>2769<br>3507 | 1400     | 1864                                                                                             | 2744                 | 3369<br>3369     |                                       | See Fig.<br>(two stir                | COMMEN                      |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 32 ft  | Af<br>in Sq.                   | , <u>6</u>   | 00             |              | , <u>w</u>   | 6            | 1 1   | 17            | 27                   | 10       | 0, 1                                                                                             | 9.0                  | 3.6              |                                       | d ties.<br>e 4 legs                  | OT RE                       |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .7L <sup>(3)</sup> |        | $\varphi_{T_n}^{\ \ t_n^+}$    | 18           | 2 18           | 2 12         | 385          | 33           | 385   | 385           | 388                  | 8 ŝ      | <u>3</u> 49 §                                                                                    | 9 <del>6</del> 6     | 1 <del>4</del> 8 |                                       | r closer<br>provide<br>3.            | ES. N                       |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4D+1               | SPAN   | STIR.<br>TIES<br>(5)           | 123H<br>196H | 143H<br>195H   | 164H         | 174H<br>285E | 123H<br>6436 | 143H  | 164H          | 265t<br>175H<br>325D | 133H     | 143H                                                                                             | 165H                 | 485B<br>485B     |                                       | ine is for<br>24 in.,<br>3ge 12-1    | 13 INCH                     | N 10 VFc                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U = 1.             |        | (4) kft                        | 4.0          | 5.5            | 8.0          | ð            | 2.9          | 7.5   | 12.0          | 13.5                 | 80<br>80 | 11.0                                                                                             | 14.3                 | 17.6             |                                       | . For b >                            | JIRED<br>SS THAN            | ER THAI<br>DS ALLO                                              |
| Ц.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACITY              |        | STEEL<br>WGT<br>Ib.            | 663<br>1169  | 910<br>1399    | 1448<br>2062 | 1679<br>2293 | 910          | 1225  | 96./<br>50022 | 2600<br>2600<br>3290 | 1322     | 1894                                                                                             | 2573<br>2573         | 4568<br>4568     |                                       | n stirrups<br>or Spans<br>nenclatur  | DT REQU                     | GREAT<br>EXCEEI                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAP/               | 30 ft  | A(<br>sq.                      | - 6,         | ۰ <del>م</del> | • •          | 1 8          |              | ] ' [ | 17            | 27                   | - c      | 0.0                                                                                              | 2 P P                | 3.6              |                                       | or oper<br>"Interio                  | RE NO                       | ESS IS                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OTAL               | (,     | ΦT <sub>n</sub><br>ft-<br>kips | 18           | 82             | : == £       | 18           | 85           | 8     | 58            | 585                  | 49       | 8 <del>8</del> 8                                                                                 | £ 6 5                | 69 <u>6</u>      |                                       | ine is f<br>ted for                  | NUM S                       | R STR<br>ION S'                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                  | SPAN,  | STIR.<br>TIES<br>(5)           | 123H         | 143H<br>185H   | 164H         | 164H<br>265E | 123H         | 133H  | 165H          | 305D<br>305D<br>305D | 133H     | 144H                                                                                             | 765H                 | 4558<br>4558     |                                       | an. first<br>is tabula<br>ulated. F  | - STIRF                     | - SHEA                                                          |
| NSNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |        | Kft (4)                        | 4.5          | 6.2            | 9.1          | 10.4         | 6.7          | 8.5   | 13.6          | 15.4                 | 10.0     | 12.5                                                                                             | 16.2                 | 20.0             |                                       | sam desig<br>se stirrup<br>acing tab | - MA                        | 1                                                               |
| SPA<br>SPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        | STEEL<br>WGT<br>Ib.            | 626<br>1099  | 849<br>313     | 1354<br>1016 | 1720<br>2132 | 848<br>1440  | 1153  | 2066          | 2430<br>2430<br>3304 | 1233     | 1768                                                                                             | 2403<br>2403         | 2982<br>4265     |                                       | or each be<br>e ends, u<br>te and sp | notation:                   |                                                                 |
| N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 28 ft  | n sq.                          | . <u>6</u>   | 1 0            |              |              | , a c        | 0 · 1 | 7.7           | 2.7                  | ' C      | י ה<br>סירי                                                                                      | 1.0                  | 3.6              |                                       | (5) Fc<br>fre<br>siz                 | Other                       |                                                                 |
| BABA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | = ") . | φT <sub>n</sub><br>Rips        | 18<br>73     | ¢<br>21 ⊈      | : ⇔ g        | 38.62        | 8 É          | 385   | z s š         | 388                  | 48       | 2<br>6<br>6<br>6<br>9<br>6<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 96 40<br>19 40       | 136<br>136       |                                       | ders,<br>ottom                       | stem                        | ss of<br>/240<br>/180                                           |
| NTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | SPAN   | STIR<br>TIES<br>(5)            | 123H<br>175H | 133H<br>175H   | 154H<br>246F | 155H<br>245E | 113H<br>563A | 133H  | 155H          | 282U<br>345C         | 123H     | 134H                                                                                             | 145H                 | 175EIH<br>425B   |                                       | For gir                              | p pers.<br>act 1.4 x        | in exce<br>ction < f<br>tion < f<br>/180                        |
| or-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |        | kft (4)                        | 5.2          | 7.2            | 10.4         | 6<br>11      | 277          | 9.8   | 15.6          | 17.7                 | 12       | 14.3                                                                                             | 18.7                 | 22.9             |                                       | lg. 12-1.<br>(b 2 ")<br>sr of laye   | ers ror ro<br>city, dedu    | eflection<br>) < deflec<br>) < deflec<br>ction > ( <sup>n</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | TOP    |                                | 6 #5         | 4,011          | 4#14         | 5#14         | 5#10         | 5#11  | 6#14          | 7#14                 | 11#9     | 6#14                                                                                             | 7#14                 | 9#14             |                                       | tails", F<br>inches<br>numbe         | d capac                     | 1,/360<br>1,/360<br>1,/240                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŝ                  | Lay-   | ers<br>(2)                     |              |                | •            |              | * +-         |       |               |                      |          |                                                                                                  |                      |                  |                                       | lar Def<br>th - 2<br>t line is       | red loa                     | hus: +<br>X<br>X                                                |
| sd 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BAR                | TOM    | $l_n^{0.875}$                  | 6 #[         | 1#10           | 2#11         | 1014         | 2# 9         | 2#11  | 2#14          | 2#14                 | 3# 9     | 3#10                                                                                             | 3#11                 | 3#14             |                                       | anded E<br>am dep<br>mn, firs        | ed facto                    | s tabula<br>gnated t                                            |
| 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | BOT    | €n +<br>12 in.                 | 2# 9         | 2#10           | 2#11         | 2#14         | 2# 9         | 2#11  | 2#14          | 3#14                 | 3# 9     | 3#10                                                                                             | 4#11                 | 3#14             |                                       | scomme<br>lated be<br>rs° colu       | erimposi                    | pacities<br>re desig                                            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۶.                 | 4      | 3.⊑                            |              |                | 24           |              |              |       | 36            |                      |          |                                                                                                  | 48                   |                  |                                       | See 'R(<br>se tabu<br>'Laye          | or supe<br>reight.          | otal ca<br>,/360 a                                              |
| $f_c'$<br>$f_y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ST                 | -      | . <u>≓</u>                     |              |                |              |              |              |       | 24.5          |                      |          |                                                                                                  |                      |                  |                                       | (1)                                  | 3) F<br>(3)                 | (4)                                                             |

## APPENDIX VI COMPOSITE STEEL BEAM



## **COMPOSITE STEEL BEAM**



Andrew Simone **Technical Assignment 2** bers < 18 span = 7.5' 2 1/2 spacing = 10' arez = SQn/0.85566 = 190/0.85(4X7.5X/2%) = 0.62 \$ 1.0 (conservature) Perpendicular to Deck (1) Weak Stud per Rub \$3/4 > Qn = 17.2 - 190°/12.2' = (1.( -> 12 Select WIO × 26 [12] 2", 20G UFZX Deck 41/2" Slab above deck ~ Composite Steel Girder ~ Po P= 2VJ = 2(22K) = 54K A MU = 13PL = (13)(54)(30') = 540'K A Assume a = /"  $V_2 = 6.5 - 0.5 = 6.0"$   $V_2 = 6.5 - 0.5 = 6.0"$   $D_{CAS} \leq \frac{1}{2} SPACE = 30'$ Select WIBA40 EQn = 308 356" > 540" .. VOK

Andrew Simone

hub

Technical Assignment 2

arequired = Zian/0.85 fichase = 308 /0.85(4X7.5X12") = 1.00" 1.00 \$1.00 .: OK / Parallel Deck W/hr = 6/3 21.5 -> 3/4 \$ = Qn = 21.5 " # Studs Elan/on = 308/21.5 = 14.3 -> 15 Use WIBX400 [15] 20 Gauge UF2X Metal Deck 2" Deck Flute w/ 41/2" Stab above Total Depth 6.5" slab 24.5 "

L



| cond | rete slabs                                             | on U                    | <b>F2X</b> (            | form                       | deci                       | - UNI             | FORM I            | LOADS,            | PSF               |                   |                   |                   |                   | L                 | -                 |
|------|--------------------------------------------------------|-------------------------|-------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|      |                                                        |                         |                         |                            |                            |                   |                   |                   |                   | Spar              | ıs, feet          |                   |                   |                   |                   |
| Slab | Mesh                                                   | +d                      | -d                      | +M                         | -М                         | 4'6"              | 5'0"              | 5'6"              | 6'0"              | 6'6"              | 7'0"              | 7'6"              | 8'0"              | 8'6"              | 9'0"              |
| 4.0" | 66 - W2.0 x 2.0*<br>66 - W2.9 x 2.9*                   | 1.919<br>1.904          | 3.007<br>2.962          | 4.060<br>5.785             | 6.326<br>8.921             | 157<br>224        | 127<br>181        | 105<br>150        | 88<br>126         | 75<br>107         | 65<br>93          | 57<br>81          | 50<br>71          | 44<br>63          | 56                |
| 4.5" | 66 - W4.0 x 4.0<br>44 - W2.9 x 2.9<br>44 - W4.0 x 4.0  | 2.387<br>2.404<br>2.387 | 3.412<br>3.462<br>3.412 | 9.975<br>10.893<br>14.708  | 14.062<br>15.463<br>20.585 | 386<br>###<br>### | 313<br>342<br>### | 259<br>282<br>381 | 217<br>237<br>320 | 185<br>202<br>273 | 160<br>174<br>235 | 139<br>152<br>205 | 122<br>133<br>180 | 108<br>118<br>160 | 97<br>105<br>142  |
| 5.0" | 66 - W4.0 x 4.0*<br>44 - W2.9 x 2.9<br>44 - W4.0 x 4.0 | 2.887<br>2.904<br>2.887 | 3.912<br>3.962<br>3.912 | 12.135<br>13.242<br>17.948 | 16.222<br>17.812<br>23.825 | ###<br>###<br>### | 381<br>###<br>### | 315<br>343<br>### | 264<br>289<br>389 | 225<br>246<br>332 | 194<br>212<br>286 | 169<br>185<br>249 | 149<br>162<br>219 | 132<br>144<br>194 | 117<br>128<br>173 |
| 5.5" | 44 - W2.9 x 2.9*<br>44 - W4.0 x 4.0                    | 3.404<br>3.387          | 4.462<br>4.412          | 15.591<br>21.188           | 20.161<br>27.065           | ###<br>###        | ###<br>###        | 392<br>###        | 329<br>###        | 281<br>377        | 242<br>325        | 211<br>283        | 185<br>249        | 164<br>220        | 146<br>197        |
| 6.0" | 44 - W4.0 x 4.0                                        | 3.887                   | 4.912                   | 24.428                     | 30.305                     | ###               | ###               | ###               | ###               | ###               | 364               | 317               | 279               | 247               | 220               |
| 6.5" | 44 - W4.0 x 4.0                                        | 4.387                   | 5.412                   | 27.668                     | 33.545                     | ###               | ###               | ###               | ###               | ###               | ###               | 351               | 308               | 273               | 244               |
| 7.0" | 44 - W4.0 x 4.0*                                       | 4.887                   | 5.912                   | 30.908                     | 36.785                     | ###               | ###               | ###               | ###               | ###               | ###               | 385               | 338               | 299               | 267               |
|      |                                                        |                         |                         |                            |                            |                   |                   | 24 g              | age —             |                   |                   | 22 g              | jage —            | 20 g              | jage —            |

| FORM | DECK       | S weights              | <b>s and volu</b>      | mes                    |                        |                        |
|------|------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| To   | tal        | UFS                    | UF1X                   | UFX                    | INV. В                 | UF2X                   |
| Slab | Depth      | C <sub>v</sub> = .0234 | C <sub>v</sub> = .0417 | C <sub>v</sub> = .0547 | С <sub>v</sub> = .0781 | C <sub>v</sub> = .0833 |
| 2.5" | Wt<br>Vol. | 27<br>0.185            |                        |                        |                        |                        |
| 3.0" | Wt<br>Vol. | 33<br>0.226            | 30<br>0.208            | 28<br>0.195            |                        |                        |
| 3.5" | Wt<br>Vol. | 39<br>0.268            | 36<br>0.250            | 34<br>0.237            | 36<br>0.245            |                        |
| 4.0" | Wt         | 45                     | 42                     | 40                     | 41                     | 36                     |
|      | Vol.       | 0.310                  | 0.292                  | 0.279                  | 0.286                  | 0.250                  |
| 4.5" | Wt         | 51                     | 48                     | 46                     | 48                     | 42                     |
|      | Vol.       | 0.352                  | 0.333                  | 0.320                  | 0.328                  | 0.292                  |
| 5.0" | Wt         | 57                     | 54                     | 52                     | 54                     | 48                     |
|      | Vol.       | 0.393                  | 0.375                  | 0.362                  | 0.370                  | 0.333                  |
| 5.5" | Wt         | 63                     | 60                     | 59                     | 60                     | 54                     |
|      | Vol.       | 0.435                  | 0.417                  | 0.404                  | 0.411                  | 0.375                  |
| 6.0" | Wt         | 69                     | 66                     | 65                     | 66                     | 60                     |
|      | Vol.       | 0.476                  | 0.458                  | 0.445                  | 0.453                  | 0.417                  |
| 6.5" | Wt         | 75                     | 73                     | 71                     | 72                     | 67                     |
|      | Vol.       | 0.518                  | 0.500                  | 0.487                  | 0.495                  | 0.459                  |
| 7.0" | Wt         | 81                     | 79                     | 77                     | 78                     | 73                     |
|      | Vol.       | 0.560                  | 0.542                  | 0.528                  | 0.536                  | 0.500                  |



|          |          | S                 | ECTION   | I PROPE  | RTIES     |            |            | ASD        |                |              | 💀 LRFD                                   |         |
|----------|----------|-------------------|----------|----------|-----------|------------|------------|------------|----------------|--------------|------------------------------------------|---------|
|          | Metal Ti | hi <b>ck</b> ness | Wt.      | ١,       | s,        | s,         | v          | R,         | R <sub>2</sub> | ٩V           | ¢R₄                                      | ∳R₂     |
| G        | iage     | Inches            | (psf)    | ) (in.4) | (in.3)    | (in.3)     | (lbs)      | (ibs)      | (ibs)          | (ibs)        | (lbs)                                    | (lbs)   |
|          | 24       | 0.0239            | 1.50     | 0.232    | 0.192     | 0.200      | 2360       | 360        | 836            | 3223         | 532                                      | 1156    |
|          | 22       | 0.0295            | 2.00     | 0.300    | 0.252     | 0.263      | 4205       | 528        | 1484           | 5477         | 736                                      | 1992    |
|          | 20       | 0.0358            | 2.00     | 0.379    | 0.325     | 0.339      | 6062       | 728        | 2224           | 8067         | 1004                                     | 3064    |
|          | 18       | 0.0474            | 3.00     | 0.523    | 0.468     | 0.485      | 8796       | 1204       | 3948           | 11182        | 1648                                     | 5388    |
|          | UF2X     | I                 |          | <u>-</u> | 2"        | k→         | 30" cover  |            | ;              | > Th<br>flar | e bottom<br>nge can                      |         |
|          |          |                   |          | 2"       |           | /<br>      | 6" pitch   |            |                | acc<br>she   | cept a ¾"<br>ear stud.<br>scale: 1½" = 1 | 1'0"    |
|          |          |                   | U        | NIFORM T | OTAL LOAD | / Load tha | t Produces | I/180 Defi | ection. psf    |              |                                          |         |
|          | -        |                   | Span     |          |           |            |            | Span       | ,, p           |              |                                          |         |
|          | Gag      | e Co              | ondition | 6'0"     | 6'6"      | 7'0"       | 7'6"       | 8'0"       | 8'6"           | 9'0"         | 9'6"                                     | 10'0"   |
|          |          | -                 | Single   | 128/94   | 109/74    | 94/59      | 82/48      | 72/40      | 64/33          | 57/28        | 51/24                                    | 46/20   |
|          | - 77     |                   | Double   | 130/226  | 111/178   | 96/143     | 84/116     | 74/96      | 66 / 80        | 59/67        | 53/57                                    | 48/49   |
|          |          | - C               | Triple   | 162/177  | 138/139   | 120/112    | 105/91     | 92/75      | 82/62          | 73/52        | 66/45                                    | 59/38   |
|          |          |                   | Single   | 168/122  | 143/96    | 123/77     | 108/62     | 94/51      | 84/43          | 75/36        | 67/31                                    | 60/26   |
|          | - 727    | 2                 | Double   | 173/293  | 148/230   | 128/184    | 111 / 150  | 98/123     | 87/103         | 78/87        | 70/74                                    | 63/63   |
|          |          |                   | Triple   | 215/229  | 184/180   | 159/144    | 139/117    | 122/97     | 108/81         | 97/68        | 87/58                                    | 78/49   |
| ¥.       |          |                   | Single   | 217/154  | 185/121   | 159/97     | 139/79     | 122/65     | 108/54         | 96/46        | 86/39                                    | 78/33   |
|          | - 20     |                   | Double   | 224/370  | 191/291   | 165/233    | 144 / 189  | 126/156    | 112/130        | 100/110      | 90/93                                    | 81/80   |
|          |          |                   | Triple   | 279/289  | 238/228   | 205/182    | 179/148    | 158/122    | 140/102        | 125/86       | 112/73                                   | 101/63  |
|          |          |                   | Single   | 312/212  | 266/167   | 229/133    | 200/109    | 176/89     | 155/75         | 139/63       | 124/53                                   | 112/46  |
|          |          | 5                 | Double   | 320/510  | 2/3/401   | 236/321    | 206/261    | 181/215    | 160/1/9        | 143/151      | 128/129                                  | 116/110 |
|          |          |                   | Inple    | 399/399  | 340/314   | 294/252    | 256/204    | 226/168    | 200/140        | 1/9/118      | 160/101                                  | 145/86  |
|          |          |                   | Single   | 1///94   | 164//4    | 149/59     | 130/48     | 114/40     | 101/33         | 90/28        | 81/24                                    | 73720   |
|          | - 24     |                   | Double   | 154/226  | 142/1/8   | 132/143    | 123/116    | 116/96     | 104/80         | 93/6/        | 83/5/                                    | /5/49   |
|          |          |                   | Cingle   | 1/5/1//  | 162/139   | 1507 112   | 140/91     | 151/75     | 124/62         | 115/52       | 103/45                                   | 94/38   |
|          |          |                   | Single   | 2457122  | 220/90    | 195777     | 170762     | 150751     | 133/43         | 110/30       | 100/31                                   | 96726   |
| Ω        |          |                   | Triple   | 200/293  | 2537250   | 201/104    | 210/1150   | 105/123    | 171/04         | 122/0/       | 127/50                                   | 124/40  |
| 5        |          |                   | Single   | 225/154  | 2131100   | 2507 144   | 2107117    | 102/06     | 171/54         | 152/00       | 137/30                                   | 124/43  |
| <b>H</b> | 20       |                   | Double   | 353/154  | 301/201   | 252/3/     | 220779     | 200/156    | 177/130        | 152/40       | 1/2/02                                   | 124/33  |
|          |          |                   | Triple   | 418/289  | 375/228   | 324/182    | 283/148    | 2007100    | 221/102        | 197/86       | 177/73                                   | 160/63  |
|          |          | <u> </u>          | Single   | 494/212  | 421/167   | 363/133    | 316/109    | 278/89     | 246/75         | 220/63       | 197/53                                   | 178/46  |
|          | 15       | 2                 | Double   | 505/510  | 431/401   | 372/321    | 325/261    | 286/215    | 253/179        | 226/151      | 203/129                                  | 183/110 |
|          |          |                   | Triple   | 627/399  | 536/314   | 463/252    | 404/204    | 356/168    | 316/140        | 282/118      | 253/101                                  | 229/86  |

## APPENDIX VII COST TABLE

|     | FLOOR SYSTEM                       | Unit | Area | Material | Install | Total   |
|-----|------------------------------------|------|------|----------|---------|---------|
| Ι   | Post-Tensioning Two-Way Flat Slab  | S.F. | 006  | \$8.18   | \$8.94  | \$17.12 |
| II  | Hollow-Core Concrete Slab          | S.F. | 006  | \$6.85   | \$3.48  | \$10.33 |
| III | Two-Way Flat Slab                  | S.F. | 006  | \$5.85   | \$7.35  | \$13.20 |
| IV  | Two-Way Flat Slab with Drop Panels | S.F. | 006  | \$7.50   | \$8.55  | \$16.05 |
| Δ   | One-Way Concrete Joist             | S.F. | 006  | \$7.10   | \$9.45  | \$16.55 |
| Ν   | Composite Steel Beam               | S.F. | 006  | \$13.65  | \$6.25  | \$19.90 |
|     |                                    |      |      |          |         |         |