Eric R. Mueller

Structural Option Senior Thesis Presentation Spring 2007 Advisor: Dr. Lepage

555 12th Street – Oakland, CA

<u>Acknowledgements</u>

Industry Professionals

AE Faculty

Friends

Family

Eric Mueller

555 12th Street

PSU AE

BACKGROUND FIRMS INVOLVED BVILDING INFO

> EXISTING STRUCTURE GRAVITY SYSTEM LATERAL SYSTEM

<u>PROPOSAL</u>

DEPTH WORK-STRUCTURAL

LATERAL REDESIGN GRAVITY REDESIGN

CONSTRUCTION MANAGEMENT

RECCOMMENDATIONS

Eric Mueller

BACKGROUND

Eric Mueller

21 story Class A Office Building First Floor Retail Space 487,000 sq ft Constructed: May 2000-Apr. 2002 Design – Build Delivery \$75,000,000

PSU AE

Structural Thesis

Eric Mueller

555 12th Street

<u>Project Team</u>

Owner/Developer – The Shorenstein Co. Architecture – Korth Sunseri Hagay Architects Structural Engineer – Nishkian Menninger Inc General Contractor – Charles Pankow Builders

Mechanical – Acco Air Electrical – Schwartz and Lindheim Plumbing – L.J. Kurse Co. Lighting – Auerbach and Glasow

Eric Mueller

EXISTING STRUCTURE

Eric Mueller

PSU AE

Mat Foundation

5 feet thick along perimeter SMRF's 7 feet think under core EBF's f'c = 4000psi

Eric Mueller

555 12th Street

PSU AE

<u>Columns (gravity only)</u>

Only 4 column sets that are gravity only on perimeter

Sizes: W14 x 109 @ top W14 x 500 @ base

13' floor to floor height typical

Create Open Office floor plan

All other columns part of LFRS

21ST FLOOR			
20TH FLOOR	601	601	
19TH FLOOR		W14x	
18TH FLOOR	00	109	
17TH FLOOR	W14×		
16TH FLOOR	132	132	
15TH FLOOR	W14X	- W14×	

Structural Thesis

Eric Mueller

PSU AE

Floor System

North

Typical : 3-21 Composite Deck Two Lines of Symmetry

Structural Thesis

Eric Mueller

555 12th Street

PSU AE

Floor System

Interior Beams: W18 x (35–60) Span: up to 45'(camber) Spacing ~10' o.c.

> Girders: W24's Span: up to 35'

Mechanical: Larger Members

North

Eric Mueller

Floor System

Composite Decking and Slab

Typical: 3" deck w/ 2 1/2" NWT #3 @ 16" EW

Roof: 3" deck w/ 2 1/2" LWT #3 @ 16" EW

Mech: 3" deck w/ 6" NWT #4 @ 12" EW

Shear Studs: 3/4" diameter U.O.N

Eric Mueller

555 12th Street

PSU AE

Lateral Dual System

Eccentric Braced Frames (EBF) – blue Shear Walls from Mat – 2nd under EBF Special Moment Resisting Frames (SMRF) – red

Eric Mueller

Structural Thesis

North

PSU AE

<u>EBF</u>

Columns: W14 x (106–665) Beams: W18–W21 Braces: W10x88 – W14x159

<u>SMRF</u>

Columns: W24, W33, W36 Beams: W24, W33

<u>Dual System:</u> SMRF's > 25% lateral loads

Eric Mueller

PROPOSAL

Eric Mueller

Design a reinforced concrete shear wall core for high rise office building in high seismic region.

Elimination of moment frames/connections and EBF's and replaced with gravity only columns and girders.

Goals:

Limit seismic induced drift Keep open office layout Reduce cost/schedule by removing moment connections/large frame members Design to pass a peer review^{*}

Solution Method

Design to Pass a Peer Review

- Code limits RC shear walls to 240ft in seismic D/E
- Performance of building during dynamic loading evaluated
- Reviewer present for preliminary, depth, and final design phases
- "Performance Based Design"
- Use: ACI 318-05, IBC 2006, ASCE7-05 as guides

Design Criteria used, more demanding than ACI-318 2005 Ch. 21

Shear Walls:

Coupling Beams:

Story Drift:

Eric Mueller

Code: Vn < 8*A_{cv}*(f'c) ^ 1/2 Designed: Vn < 4*A_{cv}*(f'c) ^ 1/2

Code: Vn < 10*A_{cv}*(f'c) ^ 1/2 Designed: Vn < 8*A_{cv}*(f'c) ^ 1/2

Code: < 0.02 h_{sx} story-to-story Designed: < 0.015 h_{sx} story-to-story < 0.01 h_{sx} from base-roof

LATERAL REDESIGN

Eric Mueller

Preliminary Design

- Target period of vibration (T) found
- Required moment of inertia (1) determined
- Shear wall locations and sizes picked
- Coupling beam sizes picked
- Concrete strength (f'c) chosen to satisfy design criteria
- Information used to start Dynamic Analysis in ETABS

555 12th Street

PSU AE

ETABS Analysis

Lumped Mass Model created Shear Walls Coupling Beams Rigid Diaphragm Point Mass

Center of Mass and Center of Rigidity coincide (symmetry)

Eric Mueller

555 12th Street

Static ETABS Analysis

Static Forces determined through Equivalent Lateral Force Procedure -includes weight of shear walls

Base Shear = 6435 kips

Eric Mueller

Accidental Torsion Amplification Factor (Ax) = 1.07 * (0.05) = .0535

Value used for eccentricity in all static/dynamic load cases

SEISMIC		
Ss	2.4095	
Sl	0.9405	
Site Class	С	
Fa, Fv	1.0,1.3	
Importance Factor	I = 1.0	
Sds	1.6063	
Sdl	0.815	
Seismic Design	Е	
R	5	
Cd	5	
Ω_o	2.5	
Cu	1.4	
Та	1.445	
Т	2.02	
k	1.76	
Cs	0.094	

PSU AE

Dynamic ETABS Analysis

Steps:

Input response spectrum function with S_{ds} and S_{dl}

Create Load cases for Forces in X and Y and drift in X and Y

Scale dynamic forces to match static Base Shear

Scale dyn. Forces by 0.85 (ASCE7 section 12.9.4)

Scale dyn. Drift by (C_d / R) (ASCE7 section 12.9.4)

Eric Mueller

Dynamic ETABS Analysis

Find Modes of Vibration with Period (T) (Modal Res. Spec. Analysis)

Eric Mueller

Dynamic ETABS Results

- Output shear in coupling beams
- Output shears for individual shear walls including accidental torsion
- Output Mx and My for shear walls piers
- Output Total base shear V = 5472 kips
- Output Dynamic Story Drift (X and Y)
- Use analysis results to check design criteria, and to detail if pass

Shear Wall Design

Eric Mueller

PSU AE

<u>Shear Wall Design</u>

All walls: f'c = 9 ksi 2 feet thick

Shear Reinforcing required

I beam: Web: $\rho = .0025$ Flanges: $\rho = .0025$ Channel: Web: $\rho = .003$ Flanges: $\rho = .0025$

Use #6 @ 12" EF EW for all

Eric Mueller

Shear Wall Design

PCA Column used to determine Flexural Reinforcing

1) 0.7D + 1.0Ex + 0.3Ey
2) 0.7D + 1.0Ex - 0.3Ey
3) 0.7D - 1.0Ex + 0.3Ey
4) 0.7D - 1.0Ex - 0.3Ey
5) 0.7D + 1.0Ey + 0.3Ex
6) 0.7D + 1.0Ey - 0.3Ex
7) 0.7D - 1.0Ey + 0.3Ex
8) 0.7D - 1.0Ey - 0.3Ex
9 0.7D - 1.0Ey - 0.3Ex

Eric Mueller

Shear Wall Design

PCA Column used to determine Flexural Reinforcing

Section	Total As (in²)	Web (in ²)	Flanges (in ²)
I beam	158	22	68 each
Channel	117	33	42 each

I beam Flange: A steel = 2.56 in²/ft Channel Flange: A steel = 3.5 in²/ft

Eric Mueller

Structural Thesis

Coupling Beam Design

Critical Component: Designed to crack before walls, and act as plastic hinges

An effective moment of inertia is used = 1/9 I gross (lower limit)

Beam 7	,9,10,12	Beam 8,11		11	
Floors	0.8*Vmax (kips)	Vavg	Floors	0.8*Vmax (kips)	Vavg
16-Roof	144	121	16-Roof	206	183
8 to 15	225	241	8 to 15	306	334
1 to 7	244	290	1 to 7	322	381

Shear reinforcing based off of Mpr, the probable flexural strength

This increased moment capacity = increased shear forces

Coupling Beam Design

Member	Width	Depth	Long. <u>Reinf</u>	Long. <u>Reinf</u> .	Skin	Shear
	(in)	(in)	Тор	Bottom	Reinf.	Reinf.
Floors 1-7						
B7	24	33	4-#11	4-#11	NONE	4 legs
						#5 ties @ 4.5"
B8	24	33	5-#11	5-#11	NONE	5 legs
						#5 ties @ 4.5"
B9	24	33	4-#11	4-#11	NONE	4 legs
						#5 ties @ 4.5"
B10	24	33	4-#11	4-#11	NONE	4 legs
						#5 ties @ 4.5"
B11	24	33	5-#11	5-#11	NONE	5 legs
						#5 ties @ 4.5"
B12	24	33	4-#11	4-#11	NONE	4 legs
						#5 ties @ 4.5"

All beams 3' deep and 2' thick f'c = 9 ksi

Eric Mueller

PSU AE

Coupling Beam Design

Eric Mueller

555 12th Street

Seismic Drift

Critical direction, (N-S)

Eric Mueller

STORY	DISP-Y	DRIFT-Y
ROOF	30.735	0.01096
MEZZ	29.4792	0.01095
STORY20	26.8858	0.01098
STORY19	25.1039	0.01097
STORY18	23.4235	0.01094
STORY17	21.7514	0.01087
STORY16	20.0919	0.01076
STORY15	18.4503	0.01061
STORY14	16.8319	0.01041
STORY13	15.2422	0.01018
STORY12	13.6872	0.00989
STORY11	12.1728	0.00957
STORY10	10.7052	0.0092
STORY9	9.2909	0.00879
STORY8	7.93682	0.00833
STORY7	6.65039	0.00782
STORY6	5.43972	0.00726
STORY5	4.31368	0.00664
STORY4	3.28208	0.00596
STORY3	2.35569	0.0052
STORY2	1.54637	0.00436
STORY1	0.86679	0.00301
GROUND	0	0
B1	0	0

GRAVITY REDESIGN

Eric Mueller

Elimination of SMRF and EBF to gravity only

Ram Structural System used for redesign

Eric Mueller

Criteria for Redesign:

Limit deflection: L / 360 for live load, L / 240 for total load Use LRFD 3rd Edition to check composite Governing Load case: 1.2 D + 1.6 L Allow Live Load Reduction (< 100psf)

Eric Mueller

New Member Sizes

Perimeter and interior columns now W14 x 43 up to W14 x 370 Previously: W24, W33, W36 Perimeter Girders now W10x12 up to W21x44 Previously: W24, W33

Substantial decrease in member sizes

CONSTRUCTION MANAGEMENT

Eric Mueller

<u>Cost</u>

All Cost information obtained from General Contractor and Fabricator Costs are in year 2000 dollars, in Oakland area.

Steel: \$1650/ton

Material: \$650 Fabrication: \$635 Erection: \$365

Moment vs. Gravity Connection: (Labor Only)

Fabrication: \$700 / connection Field Welding: \$800 / connection

Concrete: \$850 / CY

<u>Original (Lateral Only)</u>

\$5,420,250 \$ 480,000 <u>\$ 420,000</u> \$6,320,250 + fire protection 3285 tons steel MC Fabrication MC F. Welding <u>Redesign</u>

\$5,100,000 <u>\$480,000</u> \$5,867,250 6000 CY concrete 465 tons steel

Savings from Redesign: \$453,000 + fireproofing

Savings and cost of field welding connections about the same

Schedule decrease?

Eric Mueller

<u>Schedule</u>

Potential Schedule savings from elimination of moment connections \$420,000 for MC field Welding

Assume two E-9 crews, welding rigid frames = \$9200 / day including O&P

Total days = 46 days / 2 crews = <u>23 days savings</u>

Jump Form should not conflict with steel erection (Walls up first)

Recommendations

New Lateral System passes design criteria set forth

New gravity columns/girders much smaller than previous design

Cost of project just over \$450,000 cheaper

Field Welding decrease = 23 days schedule savings = open earlier / more rent revenue

Jump Form efficient for shear walls

Use redesigned Lateral and Gravity System

Eric Mueller

555 12th St

100

æ

۵

00

0

0

Questions?

惑星大怪獸

0.0

の作品は実写を一切使用しておりません