The New Student Housing Building

at The Mount St. Mary's University Emmitsburg, Maryland

Erik Shearer Advisor: Dr. Srebric

Project Background
Current Mechanical Systems
Mechanical Alternatives – Depth
Life Cycle vs. First Cost Analysis
Electrical Generation – Breadth
Final Recommendation

Erik Shearer Advisor: Dr. Srebric

Project Background

Project Overview

- Site: Emmitsburg, Maryland
- Size: 60,000 SF / 3 Stories / 180 Beds
- Cost: \$10,800,000 Total / \$3,400,000 MEP

Primary Project Team

- Owner: The Mount St. Mary's University
- Architect: Ayers / Saint / Gross Architects
- Construction Manager: Gilbane
- Civil Engineer: Harris, Smariga, & Associates, Inc.
- Structural Engineer: Keast & Hood Co.
- MEP Engineer: Burdette, Koehler, Murphy, and Associates, Inc.

Erik Shearer Advisor: Dr. Srebric

Project Background

Architecture

- Designed to create the appearance of a village
- Comprised primarily of 4-bedroom suites, each with a shared bathroom and living area
- Small lounge area provided on each floor
- Designed to achieve LEED Certification

Erik Shearer Advisor: Dr. Srebric

- Project Background
- Current Mechanical Systems
- Mechanical Alternatives Depth
- Life Cycle vs. First Cost Analysis
- Electrical Generation Breadth
- Final Recommendation

Erik Shearer Advisor: Dr. Srebric

Current Mechanical Systems

Geothermal Heat Pump System

Exterior

- Originally designed with 125, 200 ft deep vertical wells
- Redesigned with 64, 400 ft deep vertical wells
- Wells located in the courtyard in front of the building
- Stem from distribution vault and connected to building mechanical room

Erik Shearer Advisor: Dr. Srebric

Current Mechanical Systems

Geothermal Heat Pump System

Interior

- 58 water-source heat pumps linked to the ground loops
- Individual units ranging from 1 2.5 tons for each space
- Condenser water pumps (2) rated at 375 GPM
- No need for boiler or cooling tower

Erik Shearer Advisor: Dr. Srebric

Current Mechanical Systems

Ventilation System

- Building designed for natural ventilation
- Exhaust fans exchanged for (3) 1050 CFM energy recovery units
 - Each heat pump closet receives 50 CFM of ventilation air
 - Can reduce outdoor air conditioning loads by 80%
- Supplemental ventilation achieved from energy recovery of exhaust air
 - Building pressurization
 - Additional ventilation when windows are closed

Domestic Service Water System

- (1) 750 GPH, 600 MBH domestic water heater with (1) 35 gallon expansion tank
- Hot water recirculated by a 15 GPM in-line pump

Erik Shearer Advisor: Dr. Srebric

- Project Background
- Current Mechanical Systems
- Mechanical Alternatives Depth
 Life Cycle vs. First Cost Analysis
 Electrical Generation Breadth
- Final Recommendation

Erik Shearer Advisor: Dr. Srebric

Goals:

- Perform analysis of yearly energy usage and cost of geothermal system
- Select comparable alternative units to model in HAP
- Evaluate results in order to determine merits of each
- Perform first cost and life cycle analyses
- Critique geothermal system based on results

Purpose:

- University very interested in green design
- Geothermal uses less energy but first costs are high
- Are first costs justified?

Erik Shearer Advisor: Dr. Srebric

Was geothermal really the best choice for this project?

Proposed Alternatives

- Traditional Water-Source Heat Pumps
- Mini-Split DX Air-Source Heat Pumps

Erik Shearer Advisor: Dr. Srebric

Case 1: Geothermal Heat Pump System

- Reject heat to and extract heat from the earth at stable temperatures year-round
- Most efficient in cooling mode, especially at part load conditions
- Requires less maintenance, but has a very high first cost due to the wells

Case 2: Water-Source Heat Pump System

- Reject heat to cooling tower and extract heat from boiler
- Less efficient in cooling mode, but greater efficiencies when heating
- Requires additional equipment

Case 3: Air-Source DX Split Heat Pump System

- Reject heat to and extract heat from exterior condensing units via refrigerant
- Less efficient than water-source applications
- Eliminates need for condenser water pumps, cooling tower, and boiler

Erik Shearer Advisor: Dr. Srebric

McQuay Water Source Heat Pumps

- Ground Loop Enfinity Model FCW Vertical Units (1 2.5 Ton)
- Closed Loop Enfinity Model FCV Vertical Units (1 2.5 Ton)

McQuay Split System Air Handlers

- Condenser Model HCC Heat Pump (1.5 2.5 Ton)
- Evaporator Model SAH Air Handler (1.5 2.5 Ton)

Erik Shearer Advisor: Dr. Srebric

Case 1: Existing Geothermal System Results

Annual Operating Costs: \$115,002

MEP Annual Operating Costs: \$46,604

Erik Shearer Advisor: Dr. Srebric

Case 2: Proposed Water-Source System Results

Annual Operating Costs: \$123,709

MEP Annual Operating Costs: \$55,340

 Water-Source 8% more efficient when heating

 Geothermal 40% more efficient when cooling

	Air System Fans	Cooling	Heating	Pumps	Boiler	Cooling Tower Fans	Total
Water-Source	\$23,479	\$18,580	\$6,717	\$3,934	\$1,726	\$904	\$55,340
Ground-Source	\$23,764	\$11,302	\$7,225	\$4,313	\$0	\$0	\$46,604
Savings	-\$285	\$7,278	-\$508	-\$379	\$1,726	\$904	\$8,736

Erik Shearer Advisor: Dr. Srebric

Case 3: Proposed Air-Source System Results

- Annual Operating Costs: \$125,971
- MEP Annual Operating Costs: \$57,299

- Geothermal 50% more efficient when heating
- Geothermal 43% more efficient when cooling

	Air System Fans	Cooling	Heating	Pumps	Boiler	Cooling Tower Fans	Total
Air-Source	\$23,311	\$19,686	\$14,302	\$0	\$0	\$0	\$57,2 99
Ground-Source	\$23,764	\$11,302	\$7,225	\$4,313	\$0	\$0	\$46,604
Savings	-\$453	\$8,384	\$7,077	-\$4,313	\$0	\$0	\$10,695

Erik Shearer Advisor: Dr. Srebric

Annual Cost Comparisons

- Geothermal savings of 15.8% annually over water-source
- Geothermal savings of 18.7% annually over air-source

o yotem		rower									
Fans		HVAC System Components									
Air-Source		Air System Fans	Cooling	Heating	Pumps	Boiler	Cooling Tower Fans	Total			
■ Water-Source	Air-Source	\$23,311	\$19,686	\$14,302	\$0	\$0	\$0	\$57,299			
Ground-Source	Water-Source	\$23,479	\$18,580	\$6,717	\$3,934	\$1,726	\$904	\$55,340			
	Ground-Source	\$23,764	\$11,302	\$7,225	\$4,313	\$0	\$0	\$46,604			
				G	round-Sou	rce savin	gs over Air-Source:	\$10,695			
				Grou	ind-Source	savings	over Water-Source:	\$8,736			
					Water-Sou	rce savin	gs over Air-Source:	\$1,959			

Erik Shearer Advisor: Dr. Srebric

- Project Background
- Current Mechanical Systems
- Mechanical Alternatives Depth
- Life Cycle vs. First Cost Analysis
- Electrical Generation Breadth
- Final Recommendation

Erik Shearer Advisor: Dr. Srebric

Life Cycle vs. First Costs

First Cost Comparisons

System Type	Equipment Costs	Installation Costs	Overhead and Profit	Total Installed First Cost
Ground-Source Heat Pumps	\$121,575	\$152,560	\$22,540	\$296,675
Water-Source Heat Pumps	\$130,050	\$31,490	\$28,985	\$190,525
Air-Source Heat Pumps	\$104,675	\$39,065	\$30,160	\$173,900

Equipment Costs

Air-Source cheapest – no boiler, cooling tower, or condenser water pumps

Installation Costs

- Geothermal most expensive excavation and installation of the wells
- 4 times more expensive than Air-Source
- 5 times more expensive than Water-Source

Total Installed First Cost

Geothermal over \$100,000 more expensive than other systems

Erik Shearer Advisor: Dr. Srebric

Life Cycle vs. First Costs

Life Cycle Cost Comparisons

25 Year Life Cycle

- Geothermal saves \$17,000 over Water-Source
- Geothermal saves \$28,000 over Air-Source

	Ground-Source	Water-Source	Air-Source
Equipment First Costs	\$121,575	\$130,050	\$104,675
Installation Costs	\$152,560	\$31,490	\$39,065
Overhead and Profit	\$22,540	\$28,985	\$30,160
Annual Energy Consumption Costs	\$46,604 \$55,340		\$57,299
Discount Rate	0.05	0.05	0.05
System Life (Years)	25	25	25
Life Cycle Cost	\$953,509	\$970,484	\$981,469

Erik Shearer Advisor: Dr. Srebric

Life Cycle vs. First Costs

Life Cycle Cost Comparisons

Payback Period for Geothermal

- 17.5 years for Air-Source
- 19.2 years for Water-Source

Other Issues

- Relocation of water utility line
- Lengthening of schedule
- Possible need for supplemental heating and cooling at extra cost

Even So...

- Dormitory could have a expected life of more than 50 years
- Long term savings will be substantial
- Savings would increase if electrical costs went up

Erik Shearer Advisor: Dr. Srebric

- Project Background
- Current Mechanical Systems
- Mechanical Alternatives Depth
- Life Cycle vs. First Cost Analysis
- Electrical Generation Breadth

Final Recommendation

Erik Shearer Advisor: Dr. Srebric

Electrical Breadth

Goals:

- Determine the available roof space for PV panels
- Perform analysis of possible electrical generation using RETScreen
- Decide whether a PV system would be worth the investment

Purpose:

- University very interested in green design
- Environmental solar system tempting for LEED points
- Offset some of the 860 MWh of annual building energy use
- Could a PV system be economically designed for this project?

Erik Shearer Advisor: Dr. Srebric

Electrical Breadth

Erik Shearer Advisor: Dr. Srebric

Electrical Breadth

Photovoltaic Analysis Results

Case	Nominal kW	Yearly	Installed	Grants &	First Cost Annual Energy		Payback	
	Produced	MWh	Cost	Incentives	(Adjusted)	Savings	Period (Years)	
Base	24.80	33.79	\$168,728	\$55,519	\$113,209	\$4,562	28.2	
Alternate	42.72	57.98	\$287,894	\$91,268	\$196,626	\$7,827	27.0	

Primary Case

- 33.79 MWh useful energy generated annually
- 4% of annual energy usage savings of \$4,562

Alternate Case

- 57.98 MWh useful energy generated annually
- 7% of annual energy usage savings of \$7,827

Payback Period Not Acceptable!

Erik Shearer Advisor: Dr. Srebric

- Project Background
- Current Mechanical Systems
- Mechanical Alternatives Depth
- Life Cycle vs. First Cost Analysis
- Electrical Generation Breadth
- Final Recommendation

Erik Shearer Advisor: Dr. Srebric

Final Recommendation

Mechanical Heating and Cooling System

- Geothermal system best alternative
- Most efficient system
- Higher first costs offset by possible long term savings
- Environmentally friendly and innovative

Photovoltaic Electrical Generation

- Very expensive first cost
- Inefficient system with very long payback period
- Not worth the investment at present

Erik Shearer Advisor: Dr. Srebric

Questions?

Erik Shearer Advisor: Dr. Srebric