HIGH RISE CONDO SOHO, NEW YORK, NY

TECHNICAL ASSIGNMENT 2 October 27, 2006

Joseph Mugford The Pennsylvania State University Structural Option Faculty Advisor: Andres Lepage

TABLE OF CONTENTS

TABLE OF CONTENTS	2
EXECUTIVE SUMMARY	3
FLOOR LOADS AND DEFLECTION CRITERIA	4
EXISTING STRUCTURAL SYSTEM	5
ALTERNATIVE STRUCTURAL SYSTEMS SYSTEM REDESIGNED TWO WAY FLAT PLATE W/ IWC POST TENSIONED TWO WAY FLAT PLATE PRECAST SLAB-GIRDER COMPOSITE STEEL	6 7 8
CONCLUSION	11
APPENDIX	12
REFERENCES	33

EXECUTIVE SUMMARY

The second technical report consists of comparative analyses of proposed alternate floor systems for the Soho high rise condo. The existing structural system of the 13 story project consists of a two-way flat plate slab. A description of the system over a typical bay is contained in the following section of this report.

To remain consistent with typical design practice of residential construction, alternate floor systems were analyzed that provided a small floor sandwich dimension. These systems include:

- Redesigned two-way Flat Plate w/ Light weight concrete
- Post tensioned two-way Flat Plate
- Precast Slab-Girder
- Composite Steel

Alternative systems were analyzed using loadings following ASCE 7-05. In some cases existing span condition were modified for alternate systems to remain consistent with typical and economical design/construction practices for these systems. Sizes and properties of these systems have been determined through analyses located in the Appendix. Each section includes a depiction of a typical floor plan as well a summary of analyses. Advantages and disadvantages of each system are described throughout the report with a summary table included in the conclusion. The table includes overall depth, constructability, cost, vibration concerns, column size, lead time, and Fireproofing.

FLOOR LOADS AND DEFLECTION CRITERIA

Typical residential floor levels are submitted to the following loads per engineering judgment and minimum design loads from ASCE 7-05. Dead Loads

> **Construction Dead Loads:** Concrete 150 PCF Steel Framing 10 **PSF** Superimposed Dead Loads: ¹/₄" Glass and Framing 20 **PSF** Partitions 20 **PSF** Finishes and Misc. 5 PSF MEP 10 PSF Live Loads **Typical Floor** 40 PSF

Deflection

• $_{\text{Total}} = L/240$

• Live Load = L/360

EXISTING STRUCTURAL SYSTEM

The Soho high rise consists of residential space floors 2-13. Residential levels consist of roughly 14000 SF for floors 2-5 and 5000 SF for floors 6-13. Column layout and typical bays vary in size to accommodate the variations in apartment layout and architectural floor plan. The flat plate slab construction is ideal for residential construction in Manhattan, due to limited building heights imposed by the city of New York. The overall floor depth of the system is small limiting overall floor to floor height, thereby increasing the number of floors and maximizing rentable floor space. The flat plate allows easy coordination with other trades due to the flat profile of the underside of the slab. The main downfall with flat plate construction is the cost that is associated with differential reinforcement requirements of column strips versus middle strips. Another downfall of any cast in place concrete construction is the increased weight of the building thus increasing column sizes, foundations and seismic forces.

The floor system of the Soho high rise is typically a 10-1/2" two-way normal weight concrete flat plate with bays range in size from 13 feet by 21 feet to 25 feet by 25 feet. Typical reinforcement is #4 @12" bottom steel and #5 @ 16" top steel. Additional reinforcement is required at most of the columns because of the inadequacy of the uniform steel to resist the increased moment. In a number of cases as many as 10 additional # 7 bars are required. The columns in the Soho high rise are primarily standard reinforced concrete with varying sizes, shape and reinforcement depending on their location in the building. The most typical shapes are 20x14 and 12x19, both with 6 #9 bars as reinforcement.

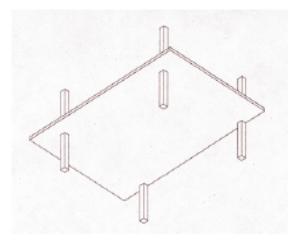
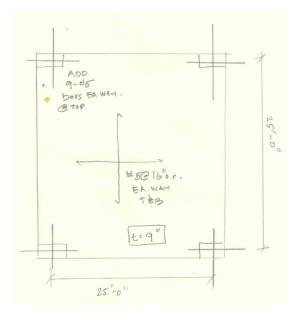


Figure 1: Typical Flat Plate Construction


ALTERNATE STRUCTURAL SYSTEMS

Redesign of Two-way Flat Plate w/ Light weight Concrete

Two-way flat plate construction is the most used structural system for residential buildings in Manhattan. The existing system uses a 10 ¹/₂" thick slab, however when minimum slab thickness is checked for deflection criteria a 9" slab is possible. This increased slab depth is primarily due to the cantilever sections located at the building corners. By adding edge beams in these locations 1 ¹/₂" of concrete can be eliminated from each floor level resulting in a significant loss in total building weight and concrete cost. These loads can further be reduced by using light weight concrete for the slabs. The same design strengths can be used and although the material cost is higher a savings in overall cost can be achieved, because of smaller beam, column and foundation sizes. By using concrete containing lightweight aggregate better thermal properties, better fire ratings, reduced autogenous shrinkage, improved contact zone between aggregate and cement matrix, less micro-cracking as a result of better elastic compatibility, more blast resistance, and better shock and sound absorption can be achieved.

As can be seen below in Figure 2 the alternative redesign resulted in significantly less steel for the same bay size used in technical report 1 of 25'x 25'. Two mats of #5 bars @16" each way were used with 9 additional # 5 bars located at columns to resist the larger negative moments. Edge beams were added at the cantilevered corner sections of the building to counteract the increased deflection resulting from the decrease in slab depth. The size of these beams was deflection controlled and resulted in a 12"x 27" section. This will fall within the existing ceiling cavity designed by the architect of 29 $\frac{1}{2}$ " and will have no impact on the mechanical systems that are present in the rest of the interstitial space. The full analysis as well as the design assumptions used can be seen in Appendix-A.

Figure 2 Redesigned Two-way Flat Plate System

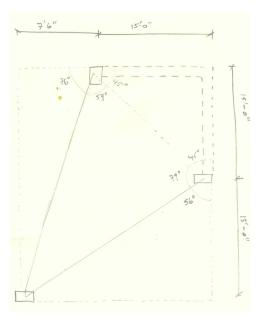
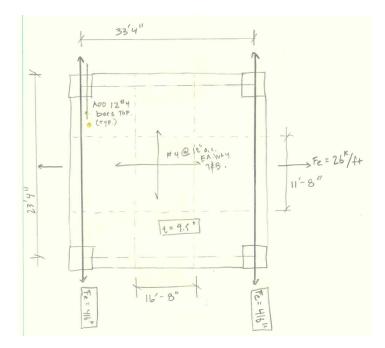
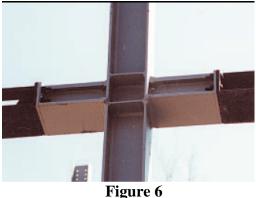


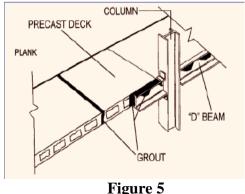
Figure 3 Typical Corner Cantilever

Post Tensioned 2-way Flat Plate

The main advantage of post tensioned concrete design is the thickness of the slab that can be achieved over long spans. By inducing compressive stresses overall moments through the section are decreased, resulting in a thinner slab. This results in lower building weight, smaller member sizes and decrease in construction and material costs. The downfall, however, is that special tendons must be used resulting in added cost from materials and special equipment. This may also have a significant schedule impact. As a result of these additional compressive forces the slab has added resistance to cracking.

The design of a post tensioned system resulted in a 9 ¹/₂" slab depth with an increased bay size of 23'4"x33'4". Banded tendons will span the short direction at column strips with an overall effective compression force of 416 kips each. Evenly distributed tendons will span the long direction and have an effective compressive force of 26 kips per foot. Rigid steel reinforcement is used to account for the superimposed dead and live loads on the floor plate. Uniform #4 bars @ 12" o.c. span each way top and bottom with 12 additional #4 bars spanning the long direction being required at the columns. A more detailed analysis can be seen in Appendix-B.


Figure 4 Post Tensioned Flat Plate

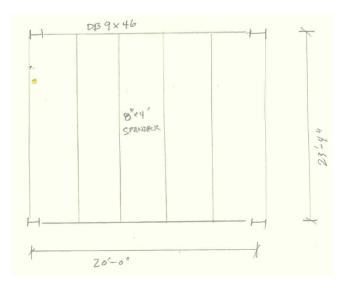
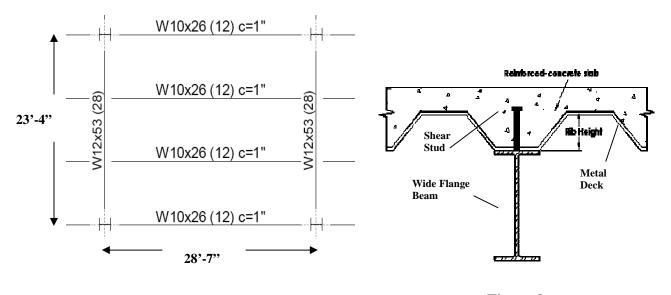
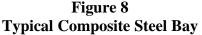
Precast Slab-Girder

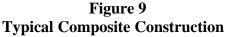
A precast slab-girder system is a specialized proprietary system designed for residential construction to compete with flat plate concrete construction. A comparative floor depth can be achieved with this system, because the precast planks are at the same elevation as the supporting girders. Bearing connections to the bottom flange of the beam are used to achieve this small floor depth as can be seen in Figure 5. To further limit the floor depth pre-fabricated columns are used with "gooseneck" connections to gain the added girder capacity associated with moment connections as can be seen in Figure 6. Special sections, called "D"-beams, with smaller top flanges must be fabricated for the girder to accommodate the precast planks. These "D" beams also have web knockouts to allow for grouting of the hollow core planks through the steel web achieving a floor system with continuous diaphragmatic action. The weight of this system is low compared to other systems, because the precast planks that are used are hollow core. Slab-girder construction results in a reduction of schedule of up to 25% compared to standard flat plate construction. Additional cost for fireproofing of the steel and coordination of steel and precast contractors may result in added construction cost. An added premium must also be paid for the use of this proprietary system.

Typical "Gooseneck" Connection

Typical Girder-Slab Construction

To economical use a girder-slab system, as with any other prefabricated unitized system, equal bays sizes are preferred. A typical bay size of 20'x 23'-4" with 3 bays in the buildings short direction and 10 bays in the buildings long direction were chosen. Columns must be added at building corners, as the existing 15' cantilevers cannot be achieved in this system without significant additional detailing and fabrication. Precast planks span the long direction of the bays and the girders span the short direction providing the most efficient use of materials. To resist the typical floor loading 8"x 4' hollow core precast spandeck was chosen with 4 ½" diameter prestressed strands. DB 9x46's were chosen for the steel girders spanning between columns. A 2" non-structural LWC topping was used as recommended by the manufacturer to cover the top flange of the beam as well as improve stiffness, thermal resistance and acoustical performance of the floor system. An overall system depth of 10" can be achieved which is comparative to the existing flat plate system. Section properties as well as design calculations for both the precast spandeck and girders can be seen in Appendix C.


Figure 7 Girder Slab

Composite Steel

Steel has the highest strength to weight ratio of any building material and as such results in the lightest framing system possible. Composite steel construction takes this a step further and uses the floor slabs compressive strength to increase the load capacity of a given wide flange shape. Typical Composite construction can be seen below in Figure 9. The floor depth is shallower than typical steel construction, however a depth as small as concrete construction is not achievable impacting plenum space and total building height. This is a widely used method of construction. As a result, there is no learning curve associated with composite construction. Steel construction often has a shorter construction schedule than concrete although lead time for fabrication is higher. Costs for formwork and its impact on schedule are avoided with steel construction by the use of metal deck. Additional cost for fireproofing must be factored into the decision between concrete and steel construction.

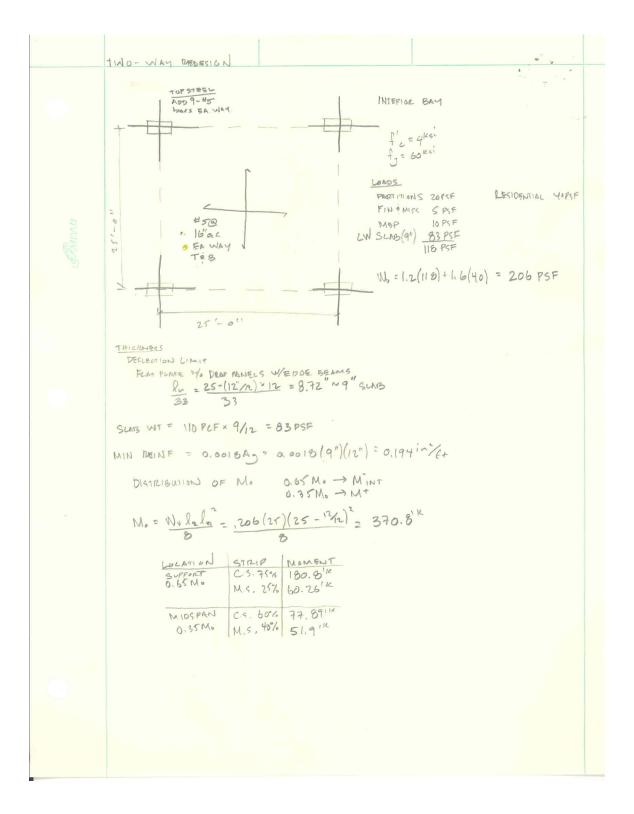
Composite steel construction benefits from the use of standard bay sizes. A typical bay of 23'4" x 28'7" divides the high rise condo in to 3 bays in the short direction and 7 bays in the long direction. The large increase in bay size and decrease in overall column dimensions will counter the constraints associated with the rigid grid provided by a steel system. Spanning the long direction between girders, evenly spaced W10x26's resist the typical floor loads associated with condo construction. Cambering of beams is an economical method used in steel construction to limit service deflections. In this case a 1" camber has been introduced on the W10's. A larger steel shape would be required to meet the

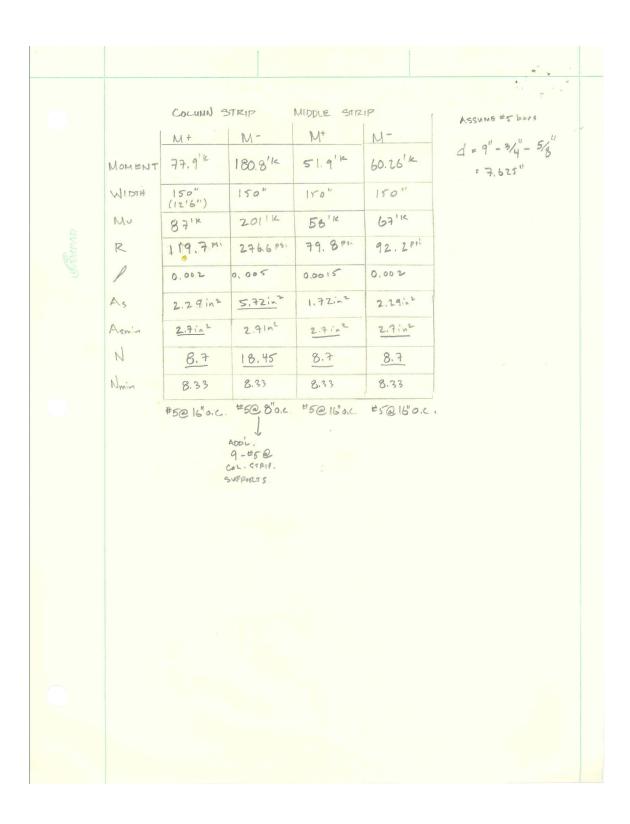
same deflection limitations if camber is not used. W12x53 girder's span the short direction of the bays and result in a total floor depth of 16 ³/₄". Although this results in roughly a 6" larger floor sandwich than the existing two-way system, HVAC ducts, plumbing and electrical conduit may be integrated into the space between the beams.

CONCLUSION

A number of alternative concrete and steel systems have been analyzed for the Soho high rise. Bay sizes were changed in some cases to effectively compare alternate floor systems. The focus of the comparison was to achieve a viable alternative system with a similar floor sandwich depth.

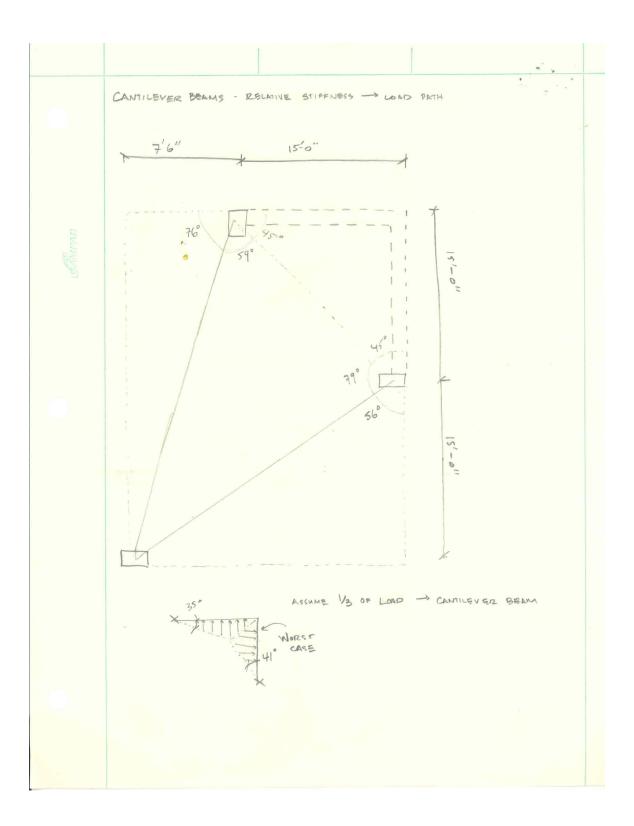
Through the comparison a concrete flat plate remained the ideal system for the high rise. The redesigned flat plate system provided a better solution to the floor framing than the original with a decrease in floor depth and a 29% decrease in service loads. The total cost of the redesigned flat plate was also one dollar cheaper per square foot. On a project of this size significant cost implications will result. The other alternative systems all provided viable options although due to the irregular column layout of the high rise condo the composite steel and slab-girder systems may result in some architectural layout implications. The post tensioned flat plate provided the largest bay sizes with the composite steel providing the second largest, however the cost associated with the PT system is 30% higher than the existing flat plate. The structural depth of the floor sandwich was comparative for all systems excluding the composite steel. Additional investigation would be required to analyze its impact on building systems.

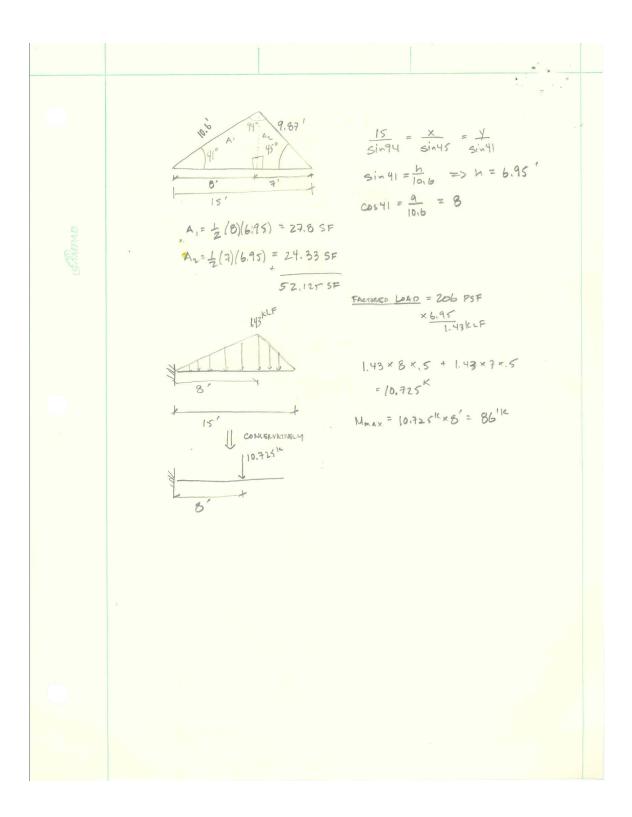

		Redesigned	PT Flat	Slab-	Composite
	Flat Plate	Flat Plate	Plate	Girder	Steel
Weight (psf)	210	150	195	115	125
Depth (in.)	10 1/2	9	9.5	10	16 3/4
Vibration	Ν	Ν	Ν	Ν	Y
Constructability	Medium	Medium	Hard	Easy	Medium
Lead Time	Short	Short	Short	Long	Long
Formwork	Yes	Yes	Yes	No	No
Fireproofing	No	No	No	Yes	Yes
Cost (\$/SF)					
Material	\$4.28	\$3.80	\$6.12	\$6.85	\$6.60
Labor	\$6.40	\$6.05	\$7.74	\$3.12	\$4.10
Total	\$10.68	\$9.85	\$13.86	\$9.97	\$10.70

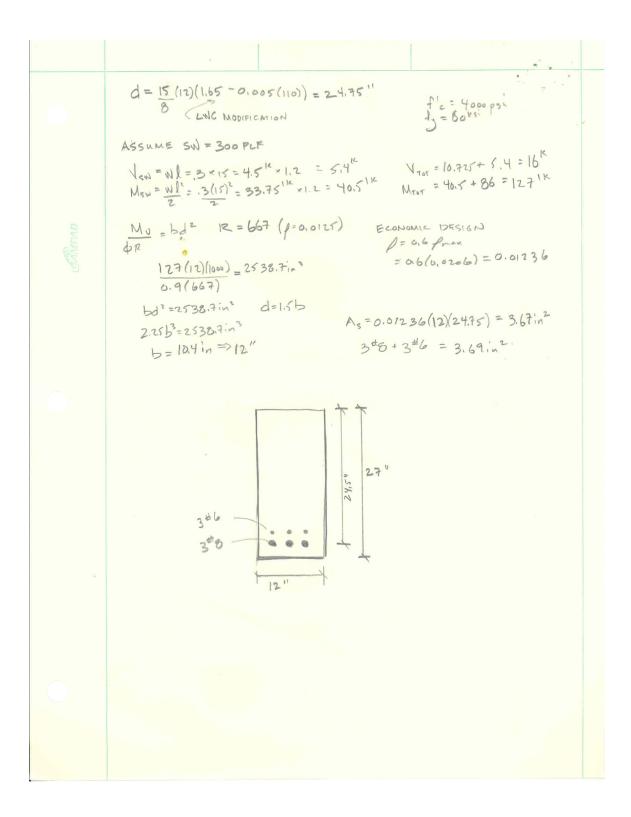

APPENDIX

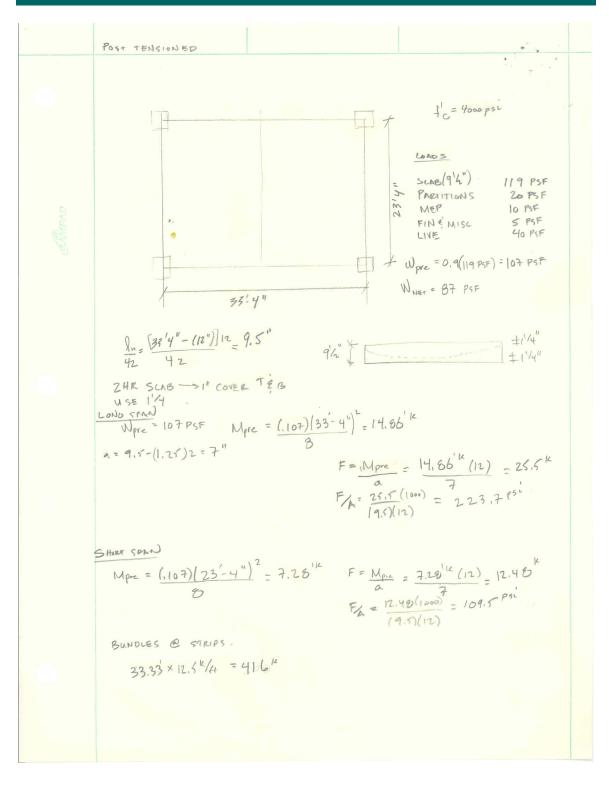
APPENDIX-A	Flat Plate Redesign
APPENDIX-B	Post Tensioned Flat Plate
APPENDIX-C	Slab-Girder
APPENDIX-D	Composite Steel

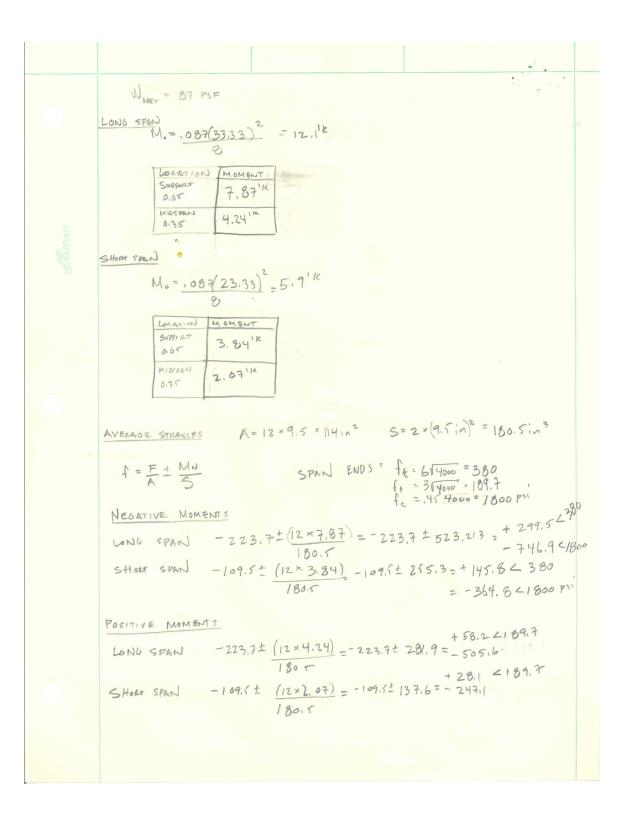
Flat Plate Redesign


APPENDIX-A

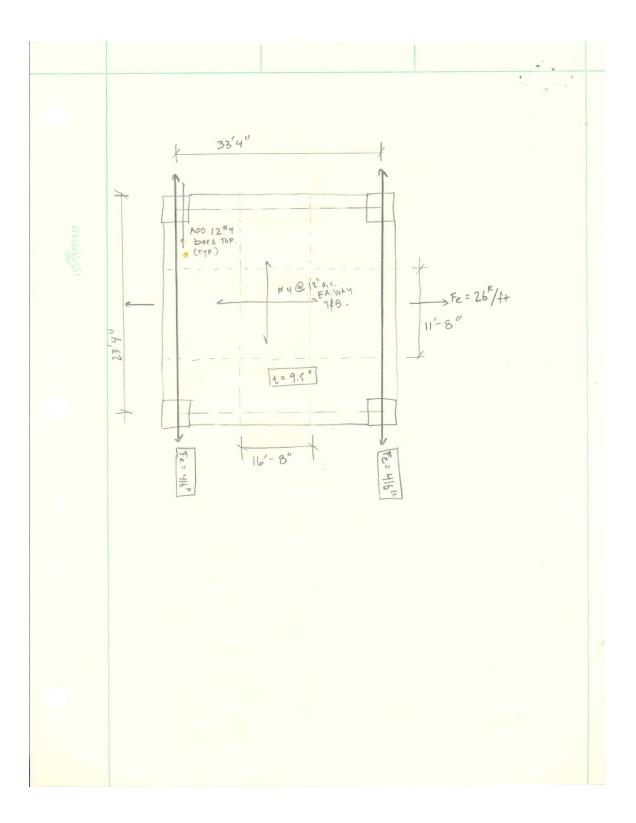



Mugford 14 of 33

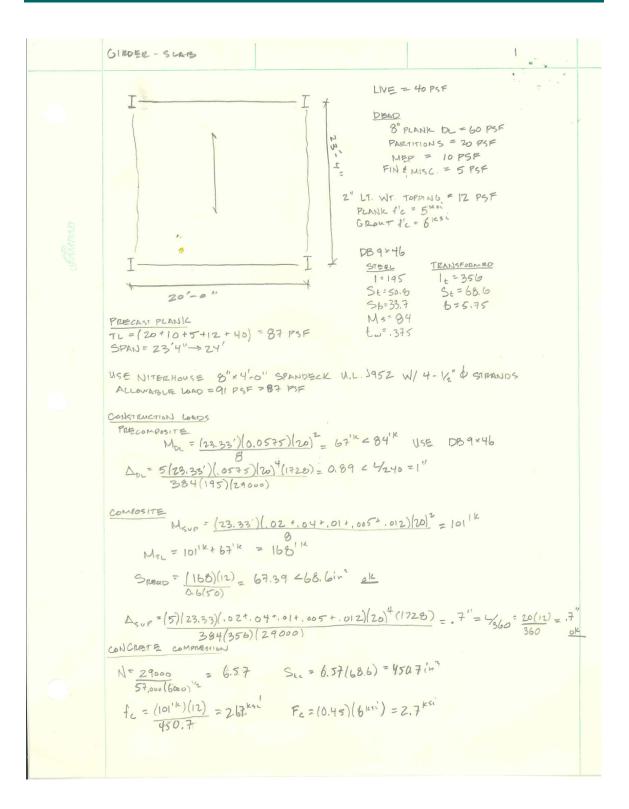


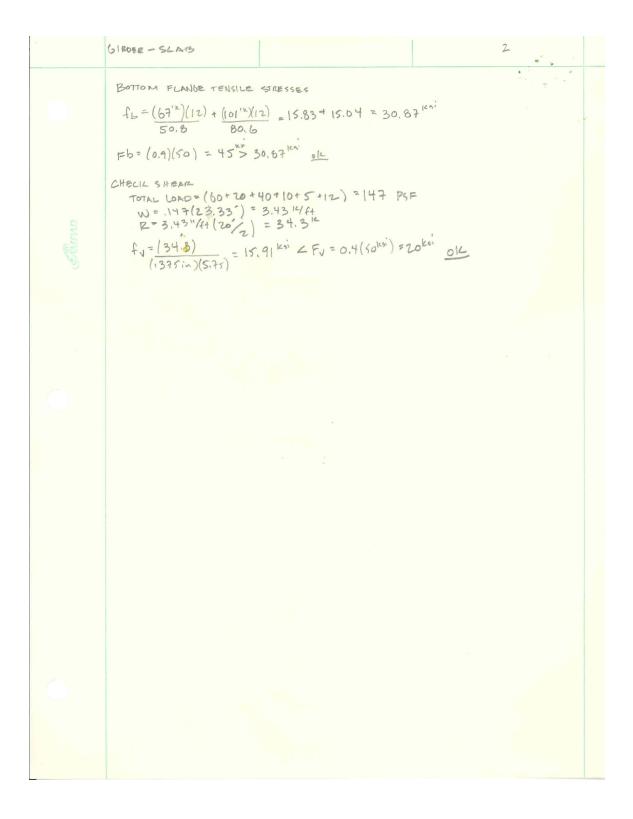

Mugford 17 of 33	

Post Tensioned Flat Plate

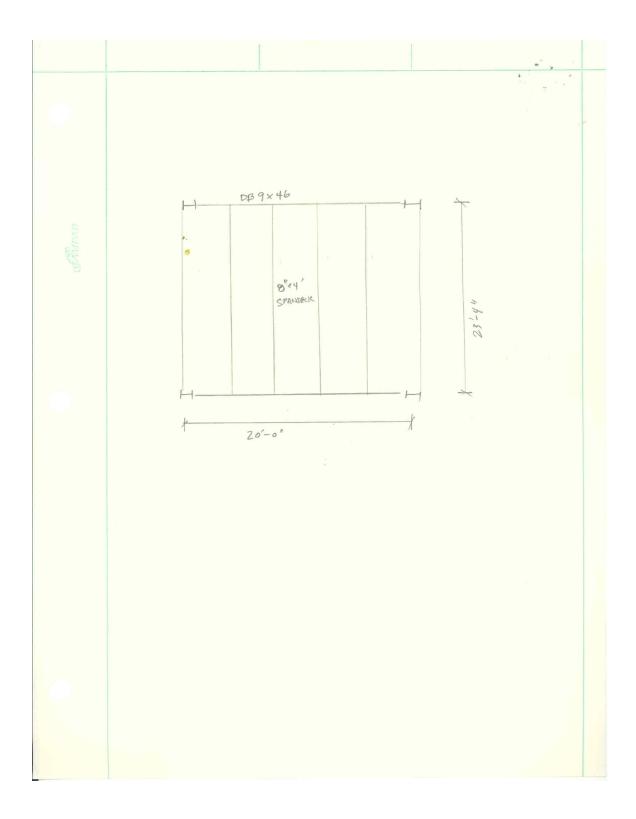

APPENDIX-B

2	
~	RIGID STREL
	ASSUME 24" SQ. COL.
	$p_{EAD} = 0.1(119) = 11.9 PSF$ PKRITIONS = 20 PSF $W_0 = 1.2(46.9) + 1.6(40) = 121 PSF$
	MEP = 10 PSF
	FIN. 9 MISZ = 5 PSF LIVE 40 PSF
9	$\frac{L_{0NO} DIR}{M_{o}} = \frac{W_{u} l_{2} l_{r}^{2}}{8} = \frac{(.120)(23.35')(33.35'2')}{8} = 346.4^{11} K$
CAMPAD	3 8
	LOC. STRIP MOMENT SUP CS 75%. 169 .65 MG 25%. 56
	MID CS 607. 73 .35 Mc 40% 49
	SHORT DIR
	$M_{s} = (.121)(33.33)(23.33 - 2')^{2} = 2.29.4^{11}$
	Ø
	Le STRIP MINKM
	5-P CS 75°60 112 165 MS. 25°10 37
	13 MS 46%. 32

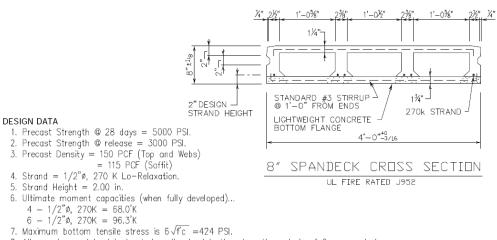

	-	LONC	DIR			SHORT	DIR		
	COLS		MID ST	210		STRIP	ſ	STRIP.	Assume = y 3
MOMENT	Mł	M-	Mt	M- 56	M+ 48	M- 112	M1 32	м- 37	d=9.5-3/4 28.25°
minery	73	169	49						20,00
WIDTH	140"	140	1400	140"	200"	200"	200"	200"	
Mu	81	188	54	62	53	124	36	41	
R	102	237	68	78	47	109	32	36	
1	,002	.004	. 00125	.0015	,001	. 002	10005	. 0005	
As	2.31	4.62	1.44	1.73	1.65	7.3	,825	. 825	
Asmin	2.31	2,11	2.31	2.31	7.3	7.3	3.3	2.3	
N	12	24	12	12	16.5	165	115	16.5	
Nmin	8	8	5	8	11	١١	IJ	11	
	@12"0.1	. C60.0	ell'ne.	Cr'ac.	Cirto.c.	@12"0.0	en'ac	@12°a.c.	+



Mugford 23 of 33


Slab-Girder

APPENDIX-C



Mugford 25 of 33

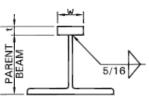
	PHYSICAL PROPERTIES											
	Precast											
А	=	199 in.²	Sb	=	332	in. ³						
1	=	1370 in. ⁴	St	=	354	in. ³						
Υ _b	=	4.13 in.	Wt.	=	230	PLF						
Yt	=	3.87 in.	Wt.	=	57.5	PSF						
е	=	2.13 in.										

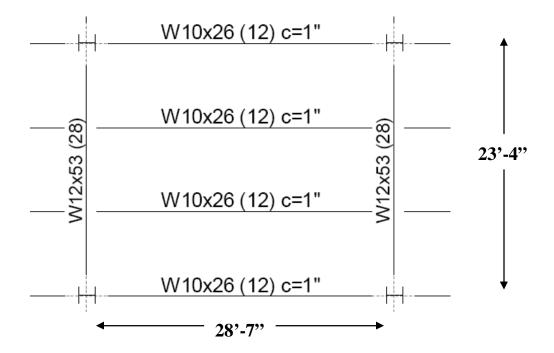
- 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 9. Flexural strength capacity is based on stress/strain strand relationships.
- 10. Shear values are the maximum allowable before shear reinforcement is required.
- 11. Deflection limits were not considered when determing allowable loads in this table.
- 12. All values in this table are based on ultimate strength and are not governed by service stress.

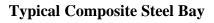
8" SPANDECK W/O TOPPING ALLOWABLE SU								UPE	RIMP	DSED	LOA	D (PS	F)													
STRAN		TTE	DN	SPAN (FE					ET)																	
STRAN	U PA	TIE	RN	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Flexure	4	-	1/2"ø	565	510	460	420	361	309	265	231	199	175	152	133	118	105	91	80	71	62	54	47	41	35	\bigtriangledown
Shear	4	_	1/2"ø	429	383	345	313	286	263	241	225	209	195	177	159	143	130	118	110	104	95	88	79	72	66	\wedge
Flexure	6	-	1/2"ø	825	745	675	619	531	456	395	344	302	265	236	209	186	167	149	134	120	107	96	86	78	70	63
Shear	6	_	1/2"ø	446	398	359	326	298	274	253	234	218	204	191	179	169	159	150	138	126	115	106	97	89	82	76

This table is for simple spans and uniform loads. design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

2655 MOLLY PITCHER HWY. SOUTH, BOX N CHAMBERSBURG, PA 17201-0813 717-267-4505 • FAX: 717-267-4518


REVISED 12/93


D-Beam Dimensions Table


	Web	Included	Depth	Web	Par	I		
Designation	Weight AVG AREA		d	Thickness t _w	Size	a	b	Top Bar w x t
	lb./ft.	In. ²	In.	In.		In.	In.	in. x in.
DB 8 x 35	34.7	10.2	8	.340	W10 x 49	4	3	3 x 1
DB 8 x 37	36.7	10.8	8	.345	W12 x 53	2	5	3 x 1
DB 8 x 40	39.8	11.7	8	.340	W10 x 49	3	3.5	3 x 1.5
DB 8 x 42	41.8	12.3	8	.345	W12 x 53	1	5.5	3 x 1.5
DB 9 x 41	40.7	11.9	9.645	.375	W14 x 61	3.375	5.25	3 x 1
DB 9 x 46	45.8	13.4	9.645	.375	W14 x 61	2.375	5.75	3 x 1.5

D-Beam Properties Table

			Stee Web	Transformed Section Web Ignored							
Designation	Ix	C bot C top S bot S top Moment Fy=50 KSI f _b = 0.6Fy			Allowable Moment Fy=50 KSI f _k = 0.6Fy	lx	C bot	C top	S bot	S top	
	In. ⁴	In.	In.	In. ³	In. ³	kft	In. ⁴	In.	In.	In. ³	In. ³
DB 8 x 35	102	2.80	5.20	36.5	19.7	49	279	4.16	4.40	67.1	63.5
DB 8 x 37	103	2.76	5.24	37.3	19.7	49	282	4.16	4.42	67.7	63.8
DB 8 x 40	122	3.39	4.61	36.1	26.5	66	289	4.26	4.30	67.9	67.2
DB 8 x 42	123	3.35	4.65	36.9	26.5	66	291	4.26	4.32	68.4	67.5
DB 9 x 41	159	3.12	6.51	51.0	24.4	61	332	4.27	5.35	77.7	62.1
DB 9 x 46	195	3.84	5.79	50.8	33.7	84	356	4.43	5.20	80.6	68.6

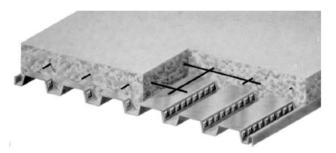
Gravity Beam Design

RAM Steel v10.0 DataBase: composite floor compare Building Code: IBC

10/25/06 23:38:06 Steel Code: ASD 9th Ed.

	Duntang Cou	e. 1DC					50	cer coue. A.	
Floor Ty	pe: floor	Beam	Number :	= 30					
Beau	NFORMATIO m Size (User Se d Beam Length	elected)	I (28.58,38 = W10X = 28.50		-End (57	.08,38.87)	Fy = 5	0.0 ksi	
COMPO	SITE PROPE	RTIES (Not	Shored):						
0	4.1	(Left		Right		
	crete thickness			1	3.25 10.00		3.25 110.00		
fc (k	weight concret	ie (pci)		1	4.00		4.00		
	king Orientation	n		perpend		pen	pendicular		
	king type	-		RAFT 1		VULCRA			
beff	~	= 85		Y bar(in)		=	11.37		
Seff	(in3)	= 39	.45 5	Str (in3)		=	50.45		
	(in4)			itr (in4)		=	556.16		
	l length (in)		.00 5	Stud diar	n (in)	=	0.75		
	Capacity (kips studs: Full	-		A	-1 - 12				
	studs: Full iber of Stud Ro		rtial = 12 cent of Full		al = 12 site Actio	n = 26.21			
		ws=1 10	cent of Fun	compo	site Actio	1 - 20.21			
	OADS (k/ft):	DL C	DL	LL	Red%	Teme	CLL		
Load 1	Dist 0.000			311	3.8%	Type Red	0.311		
1	28,500			311	5.676	Rea	0.311		
SHEAR	: Max V (DL+				Fv = 20	00 ksi	0.211		
		LL) = 15.50 I	ups 11	4.99 Kai	10-20	.00 K31			
MOME:	Cond	Moment	<i>(a)</i>	Lb	СЪ	Tene	ion Flange	Comm	r Flange
Span	Cond	kip-ft	ft	ft	00	fb	Fb	fb	Fb
Center	PreCmp+	71.1	14.3	0.0	1.00	30.58		30.58	33.00
	Max +	95.2	14.3						
	Mmax/Seff					28.95	33.00		
	Mconst/Sx+1	Mpost/Seff				33.93	45.00		
Controlli	~	71.1	14.3	0.0	1.00	30.58	33.00		
fc (ksi) =	= 0.43 Fc	= 1.80							
REACT	IONS (kips):								
			Left		ght				
	al reaction		9.98		.98				
	reaction		9.09		.09				
	+LL reaction		4.27		.27				
	+total reaction		13.36	5 15	.36				
	CTIONS: (Ca								
	al load (in)	a		.25 ft =		383	L/D =	247	
	load (in) Completed (in)	a a		.25 ft = .25 ft =		432 791	L/D = L/D =	792 433	
	Comp load (in Total load (in)) a a		.25 ft =		173	L/D =	291	
1101	rotar ioau (iii)	a	. 14.	2.5 11	-1.		2.0	271	

Gravity Beam Design


RAM Steel v10.0 DataBase: composite floor compare Building Code: IBC

10/25/06 23:40:20 Steel Code: ASD 9th Ed.

	Duming .	couc. 1	20						Steer eede. 1	
Floor Ty	pe: floor		Beau	n Numbe	er = 18					
Bear	NFORMAT m Size (Use d Beam Len	r Selec	ted)	d (28.58, = W1 = 23.3	2X53	J-End (28	3.58,46.66)		50.0 ksi	
COMPO	SITE PRO	OPERT	IES (Not	Shored):	:					
~						Left		Right		
	crete thickn					3.25		3.25		
fc (k	weight con	icrete (J	pcI)			4.00		110.00 4.00		
	king Orienta	ation			r	arallel		parallel		
	king type			VU.	LCRAFT		VULCR/	AFT 1.5VL		
beff	(in)	=	6	9.99	Y bar(in)	=	11.22		
	(in3)	=		9.49	Str (in3)		=	107.95		
	(in4)	=			Itr (in4)		=	1170.19		
	l length (in) l Capacity (l			4.00	Stud dia	m (in)	=	0.75		
	studs: Fi			Partial = 2	28 Ac	tual = 28				
	iber of Stud						n = 25.58			
POINT	LOADS (ki	ins):								
Dist			RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red% CI	L
7.770	18.18	11.09		24.7	0.00		0.0	0.00	Snow 8.3	87
15.540	18.21	11.10	8.88	24.7	0.00	0.00	0.0	0.00	Snow 8.3	38
SHEAR	: Max V (I	DL+LL	.) = 24.90	kips fv	= 5.96 ksi	Fv = 20	.00 ksi			
MOME	NTS:			-						
Span	Cond	1	Ioment	a	Lb	Cb	Ter	ision Flang	e Com	or Flange
-			kip-ft	ft	ft		ft		b fb	Fb
Center	PreCm	•	155.5	15.5	7.8	1.75	26.43	3 33.00	0 26.43	33.00
	Max +		193.7	15.5			25.00		<u>,</u>	
	Mmax/Se		ant/Sinff				25.98 29.07			
Controlli	Mconst/S	sx+ivip	155.5	15.5	7.8	1.75				
	-	Fc = 1		10.0	7.0	1.75	20.42	, 55.0	0	
	IONS (kips	-).								
KLACT.	IONS (MPS	<i>.</i> ,		L	eft R	ight				
Initia	al reaction					9.96				
DL 1	reaction			18	.21 1	8.18				
	+LL reacti					5.68				
Max	+total reac	tion		24.	.90 24	4.87				
	CTIONS:									
	al load (in)				11.66 ft =		.701	L/D =	399	
	load (in) Course load	(in)			11.66 ft =		.224	L/D =	1250	
	Comp load Total load (11.66 ft = 11.66 ft =		.462 .163	L/D = L/D =	606 241	
rvet	i otar ioad ((111)		at .		-1	.105	LD -	241	

SLAB INFORMATION

Total	Theo. Concre	ete Volume	Recommended						
Slab	Yds./	Cu. Ft./	Welded Wire						
Depth	100 Sq. Ft.	Sq. Ft.	Fabric						
31/2 "	0.78	0.210	6x6-W1.4xW1.4						
4"	0.93	0.252	6x6-W1.4xW1.4						
41/2"	1.09	0.294	6x6-W1.4xW1.4						
4 3/4"	1.16	0.314	6x6-W1.4xW1.4						
5"	1.24	0.335	6x6-W2.1xW2.1						
51/2"	1.40	0.377	6x6-W2.1xW2.1						
53/4"	1.47	0.398	6x6-W2.1xW2.1						
6"	1.55	0.418	6x6-W2.1xW2.1						

ULCRAFT

(N=14) LIGHTWEIGHT CONCRETE (110 PCF)

Total	Dut 1	s	SDI Max. Unshored			Superimposed Live Load, PSF													
Slab	Deck	10	Clear Span			Clear Span (ftin.)													
Depth	Type	1 Span	2 Span	3 Span	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0	10'-6	11'-0	11'-6	12'-0
3 1/2* (t=2*)	1.5VL22	5'-7	7'-5	7'-6	278	247	206	185	167	152	139	124	105	89	76	66	57	50	44
	1.5VL21	6'-3	8'-3	8'-5	293	260	233	195	177	161	147	130	110	93	80	69	60	53	4
	1.5VL20	6'-8	8'-11	9'-0	305	271	243	220	185	168	154	135	114	97	83	72	62	54	4
	1.5VL19	7'-6	10'-0	10'-1	329	292	262	237	216	198	167	145	122	104	89	77	67	58	5
	1.5VL18	8'-2	10'-8	11'-0	350	311	279	252	230	211	184	153	129	110	94	81	71	62	5
26 PSF	1.5VL17	8'-11	11'-4	11'-8	352	312	280	253	231	212	195	163	137	116	100	86	75	66	5
	1.5VL16	9'-6	11'-10	12'-3	352	312	280	253	231	212	195	171	144	122	105	91	79	69	6
	1.5VL22	5'-4	7'-1	7'-2	324	269	239	215	194	177	161	148	136	126	113	98	85	75	6
4*	1.5VL21	5'-11	7'-11	8'-0	341	303	253	227	205	187	171	157	145	134	119	102	89	78	6
	1.5VL20	6'-4	8'-5	8'-7	355	315	283	237	214	195	178	164	151	140	123	106	92	81	7
(t=2 1/2*)	1.5VL19	7'-1	9'-6	9'-7	382	339	304	275	251	211	193	178	164	152	131	113	99	86	7
	1.5VL18	7'-9	10'-2	10'-6	400	360	323	292	266	244	206	189	175	162	139	120	104	91	8
30 PSF	1.5VL17	8'-5	10'-10	11'-2	400	361	324	293	267	245	226	190	175	163	147	127	111	97	8
	1.5VL16	9'-0	11'-4	11'-9	400	360	323	292	266	244	225	209	195	162	151	134	116	102	9
	1.5VL22	5'-1	6'-9	6'-10	372	309	275	246	223	202	185	170	156	145	134	125	116	106	9
4 1/2"	1.5VL21	5'-8	7'-7	7'-8	391	347	290	260	235	214	196	180	166	153	142	132	123	111	9
	1.5VL20	6'-0	8'-1	8'-2	400	361	324	272	246	223	204	188	173	160	149	139	129	114	10
(t=3")	1.5VL19	6'-9	9'-0	9'-2	400	388	348	315	265	242	221	203	188	174	162	151	140	122	10
	1.5VL18	7'-4	9'-9	10'-0	400	400	369	334	305	257	236	217	200	186	173	161	147	129	11
35 PSF	1.5VL17	8'-0	10'-4	10'-8	400	400	370	335	305	280	258	217	200	186	173	161	151	137	12
	1.5VL16	8'-6	10'-10	11'-3	400	400	369	334	304	279	257	239	199	185	172	160	150	140	12
	1.5VL22	5'-0	6'-8	6'-9	396	329	293	263	237	216	197	181	167	154	143	133	124	116	10
4 3/4"	1.5VL21	5'-6	7'-5	7'-6	400	370	309	277	251	228	208	191	177	163	152	141	132	123	11-
	1.5VL20	5'-11	7'-11	8'-0	400	385	322	289	262	238	218	200	185	171	159	148	138	129	118
(t=3 1/4")	1.5VL19	6'-7	8'-10	8'-11	400	400	371	336	283	257	235	216	200	185	172	160	150	140	12
	1.5VL18	7'-2	9'-7	9'-9	400	400	393	356	324	274	251	231	213	198	184	171	160	150	13
37 PSF	1.5VL17	7'-9	10'-2	10'-6	400	400	394	356	325	298	251	231	213	198	184	171	160	150	14
	1.5VL16	8'-4	10'-8	11'-0	400	400	392	355	324	297	274	230	212	197	183	171	159	149	14
5"	1.5VL22	4'-11	6'-6	6'-7	397	350	311	279	252	229	209	192	177	164	152	141	131	123	11
	1.5VL21	5'-5	7'-3	7'-4	400	369	328	295	266	242	221	203	188	174	161	150	140	131	12
	1.5VL20	5'-9	7'-9	7'-10	400	400	342	307	278	253	231	212	196	181	168	157	146	137	12
(t=3 1/2*)	1.5VL19	6'-5	8'-8	8'-9	400	400	394	332	300	273	250	230	212	197	183	170	159	149	14
	1.5VL18	7'-0	9'-4	9'-7	400	400	400	378	344	291	266	245	226	210	195	182	170	159	15
39 PSF	1.5VL17	7'-7	9'-11	10'-3	400	400	400	378	345	316	266	245	226	210	195	182	170	159	15
	1.5VL16	8'-2	10'-5	10'-9	400	400	400	377	343	315	291	244	225	209	194	181	169	159	14
5 3/4*	1.5VL22	4'-7	6'-2	6'-3	400	400	367	329	297	270	247	227	209	193	179	166	155	145	13
	1.5VL21	5'-2	6'-11	7'-0	400	400	387	347	314	286	261	240	221	205	190	177	165	154	14
	1.5VL20	5'-6	7'-4	7'-5	400	400	400	362	327	298	272	250	231	214	199	185	172	161	15
(t=4 1/4")	1.5VL19	6'-1	8'-2	8'-4	400	400	400	391	354	322	295	271	250	232	215	201	187	175	16
	1.5VL18	6'-7	8'-10	9'-1	400	400	400	400	376	343	314	289	267	247	230	214	200	188	170
46 PSF	1.5VL17	7'-2	9'-5	8,-8	400	400	400	400	400	343	314	289	267	247	230	214	200	188	17
	1.5VL16	7'-8	9'-11	10'-3	400	400	400	400	400	371	312	287	265	246	229	213	199	187	17

In these minimum lengths are not provided, web chipping must be checked. 2. Always contact Vulcraft when using loads in excess of 200 psf. Such loads often result from concentrated, dynamic, or long term load cases for which reductions due to bond breakage, concrete creep, etc. should be evaluated. 3. All fire rated assemblies are subject to an upper live load limit of 250 psf. 4. Inquire about material availability of 17, 19 & 21 gage.

COMPOSITE

43

References

LRFD Manual of Steel Construction 3rd Edition 2001

ACI 318-05

Nitterhouse Concrete Products Precast Catalog

Girder-Slab Systems Design Catalog

Vulcraft Deck Catalog

RS Means Assemblies Cost Data 2002