

Whiteland Village

Mary Longenecker Structural Option Senior Thesis August 7, 2007

Outline

- Introduction
- Criteria for Redesign
- Lateral Redesign
 - Staggered Truss
 - Partially Restrained
 Composite Connections
- Construction Management Issues
- Existing Envelope Analysis
- Conclusions

Retirement Community

Exton, Pennsylvania

1,320,000 sq. ft.

\$100-150 million

Design-Build

Dates of Construction Nov. 2006 - Nov. 2008 Architects:

Dever Architects (Residences)
HLM Design (Commons)

Structural Engineers:

Baker, Ingram & Associates

Construction Managers:
Paul Risk Associates, Inc.

HVAC: Madsen, Inc.

Electrical:

Meadow Valley Electric

Existing Systems

- HVAC
 - Central Exhaust System using Energy Wheel
 - Chilled Water Cooling
 - Gas Hot Water Heating
- Fire Protection
 - Wet Sprinkler System
- Electrical
 - 208Y/120V from (1) 5kV Transformer
 - Onsite Co-generation Plant

Existing Structural System

- Lateral System
 - 10" CMU Shearwalls
 - 10" Thick Concrete Shearwalls

Existing Structural System

- Floor System
 - 8" Untopped Hollow
 Core Precast Plank
 - Spanning 30 ft.
 - Can be considered a rigid diaphragm

Alternate Design Considerations

- Ease of future renovations
- Maximum 1'-8" structural depth
- Constructability
- Cost
- Floor vibration
- Fire protection

Staggered Truss

- Full story trusses
 - Span transverse width
 - Alternate floors
- Advantageous in long and narrow buildings

- Floor System
 - 8" Untopped Hollow-Core Precast Plank
- Design Base Shear = 462 k
 - -R = 3 for overall system
 - -T = Cu * Ta

Axial Force in Truss due to Gravity Loads (k)

Axial Force in Truss due to Lateral Loads (k)

Columns:

W10x100 A992

Diagonals and Verticals:

HSS 8x6x5/8 A500 GrB

Chords:

W10x77 to W10x112 A992

Slotted HSS to Gusset Plate Connection Details:

Weld Length: 20"

Width: 3/8"

Plate Thickness: 1/2"

Foundations

Truss Columns

7'x7'x1'-10" spread footing with (6) #7 bars ea. way

Gravity Columns

4'x4'x1' spread footing with (4) #5 bars ea. way

Typical Detail of Column Footing

Partially Restrained Composite Connections

- Type 3 connections
 - Used with steel frame and composite floor
- Reinforcing in the slab used to create top portion of moment connection

 Shear resistance from seat angle at bottom of connection

Partially Restrained Composite Connections

Typical Detail of PRCC

- Floor System Determination
 - Using Floor Vibration Serviceability
- 1 1/2" Composite Deck with 5.5" Total Slab Thickness
- Design Lateral Load = 431 k
 - -R = 3
 - -T = Cu * Ta

Frame	Beam Location	Connection	Beam and Studs	Mu (ftk)	I _{LB} (in^4)
NS	Typ Bay Floor	PIN-PIN	W21x44 (14)	397	1420
EW	Int. Bay Floor	PIN-PIN	W16x40 (16)	277	886
	Ext. Bay Floor	PIN-PIN	W16x40 (16)	277	886

- Analysis determined PRCC type connections not warranted in braced frame layout
- Structural depth greater than 1'-8" limit
- Condominium layouts would require changes to allow for bracing

Construction Management Issues

- Existing Lateral System Cost: \$363,000
- Staggered Truss
 System Cost:
 \$610,000
- Existing system more labor-intensive

01
Cost
6236
3120
0255
13285
72896
32618

Existing Lateral System Cost

Material	Total Cost
STL Cols	36786
Fireproofing	40582
HSS Bracing	96941
STL Beams	279590
Conc Ftgs	5356
Total Cost	459255
Adjusted Total	610246

Staggered Truss System Cost

Concerns:

- Drainage
- Drip edge
- Moisture Penetration

Roof wells for mechanical units

- Recommendations
 - Add drainage cavity
 - Extend drip edge
 - Keep existing detailing for mechanical wells
 - Onsite checks to ensure detailing complete

Conclusions

- Staggered truss is a feasible structural alternate
 - Allows for ease of renovation
 - More costly system
- Partially restrained composite connections are not feasible
- Envelope details should be reworked to prevent bulk water penetration

Acknowledgements

Thanks to the following individuals for their assistance throughout my project:

- Dr. Andres LePage
- Andreas Phelps
- The entire AE Department Faculty and Staff
- Larry Baker and the entire staff of Baker, Ingram & Associates
- John Beers of Paul Risk Associates Inc.
- Partners of Whiteland Village

Special thanks to my friends and family

Questions

