The Pennsylvania State University Architectural Engineering

GEORGE W. HAYS PK-8 CINCINNATI, OH Ice Storage System Implementation

Rodrick A. Crousey April 18, 2007

Mechanical Focus Senior Thesis

Rendering Courtesy Moody Nolan, Inc.

- □ Building Overview
- □ Ice Storage System Design and Analysis
- □ Location of Ice Storage Tanks
- Electrical Equipment Downsizing
- Cost Payback Analysis

Conclusion

Rodrick A. Crousey Mechanical Option

Criteria for Evaluation

➤ Cost

Higher First Cost vs. Annual Energy Savings

- Effect on Building Function
- Effect on Surrounding Community
 On-Peak Energy Usage
 Energy Consumption

Educational

Rodrick A. Crousey Mechanical Option

Building Overview

- □ Ice Storage System Design and Analysis
- □ Location of Ice Storage Tanks
- Electrical Equipment Downsizing
- Cost Payback Analysis
- Conclusion

Rodrick A. Crousey Mechanical Option

Project Team

Moody-Nolan, Inc. – Architect & Civil Engineer ThermalTech Engineering, Inc. – MEP Engineer GOP Limited – Structural Engineer Turner/DAG/TYS – Construction Manager

Rodrick A. Crousey Mechanical Option

Building Overview

- Pre-Kindergarten Through 8th Grade
 - Classrooms, Offices, Cafeteria, and Gym
- ➢ 500 Students
- ▶ 66,000 ft²
- Owned by Cincinnati Public Schools

Rodrick A. Crousey Mechanical Option

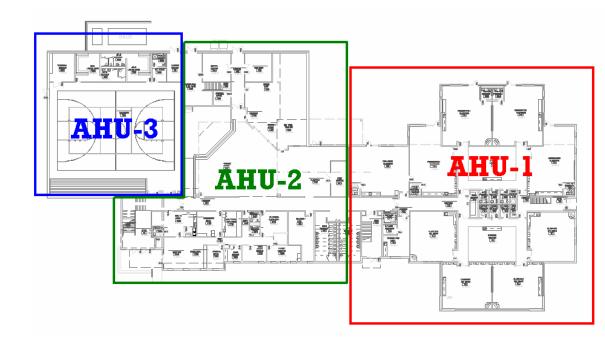
Building Overview

- > \$11,149,342 Construction Costs
- Construction 2006 2007
- Concrete Slabs on Metal Decking
- Brick Veneer, CMU Back Up
- EPDM Membrane Roof System

Rodrick A. Crousey Mechanical Option

Building Overview

- Main Switch Board 2000a, 480Y/277, 3P, 4W
- Primary Service 480Y/277, 3P, 4W
- Secondary Service 208Y/277, 3P, 4W


Rodrick A. Crousey Mechanical Option

- ➤ AHU-1 Classrooms
- AHU-2 Offices/ Cafeteria
- ➢ AHU-3 Gymnasium

One 170 ton Chiller

Two 1500 Mbtu/hr Natural Gas Boilers

Rodrick A. Crousey Mechanical Option

✓ Building Overview

Ice Storage System Design and Analysis

- □ Location of Ice Storage Tanks
- Electrical Equipment Downsizing
- Cost Payback Analysis

Rodrick A. Crousey Mechanical Option

Ice System Research

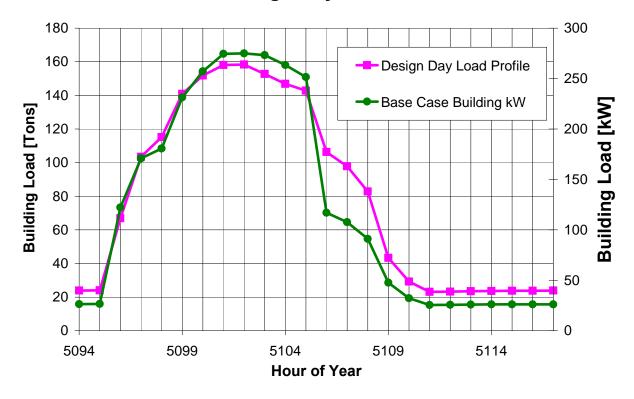
- Building Engineer
- CALMAC Representative
- ASHRAE Design Guide

Rodrick A. Crousey Mechanical Option

Ice System Strategy

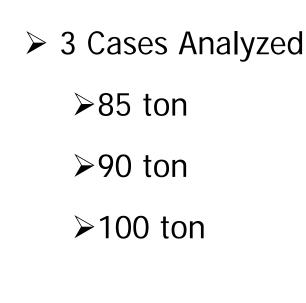
- Chiller Priority
- Chiller Upstream
- Internal Freeze Internal Melt
- Ice Tanks in Parallel
- Primary/Secondary

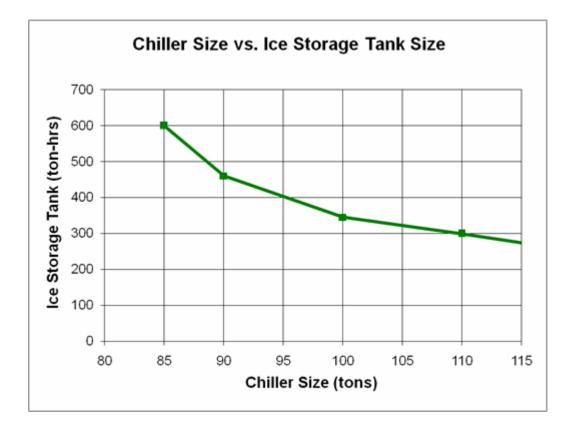
Rodrick A. Crousey Mechanical Option

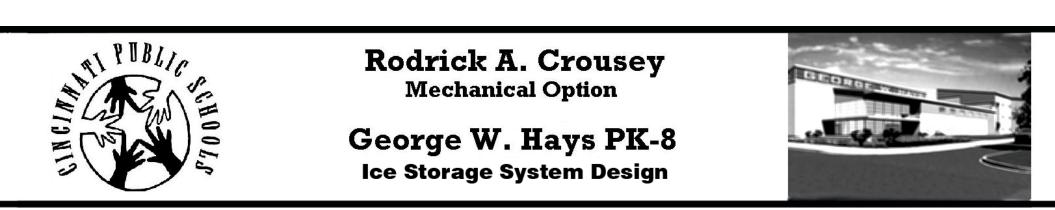

➤ 158 Ton Max Load

Design Day Profile

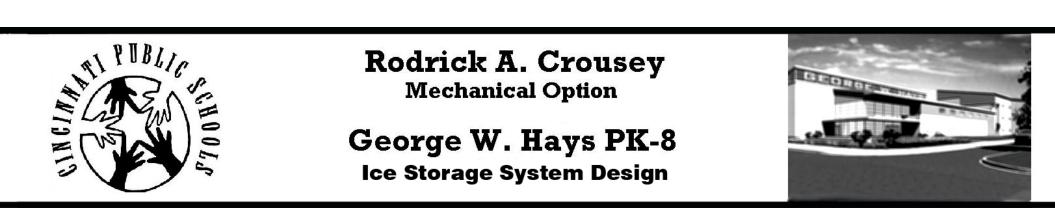
≻1910 Ton-Hrs

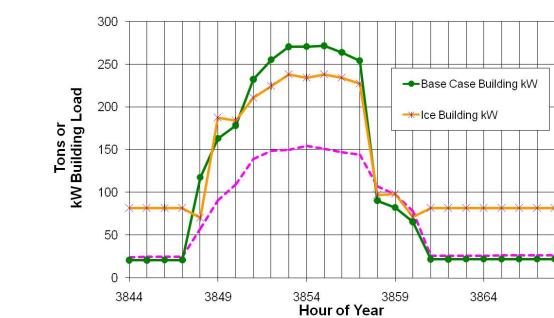

Similar Electric and Thermal Load Peak



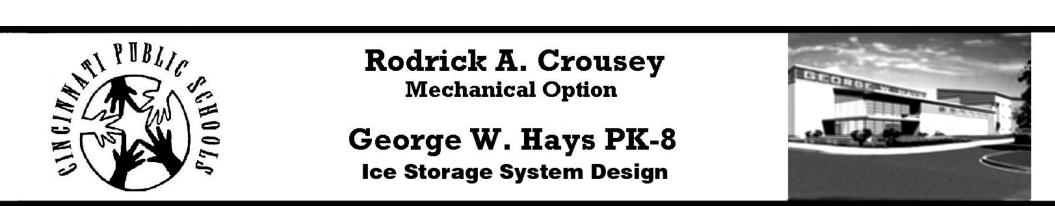

Rodrick A. Crousey Mechanical Option

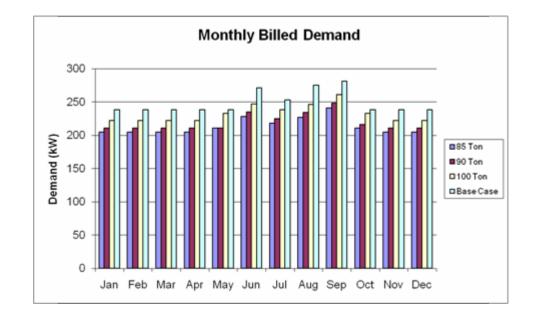
≻90 ton Quickest Return




➤ 486 ton-hrs Ice Storage

Design Day Profile


➢ 90 ton Chiller -Design Day Charged Ice Charged Ice (ton-hr) ----Chiller Output > 57 ton/hr Max **Discharge Rate** Chiller Load >36 ton/hr Max Charge Rate Hour of Year

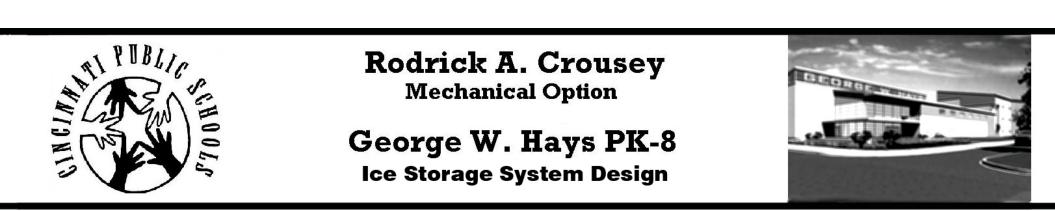


- ➢ From 271 kW to 238 kW
- Lower On-Peak Energy Usage
- Higher Off-Peak Energy Usage
- Higher Overall Energy Usage

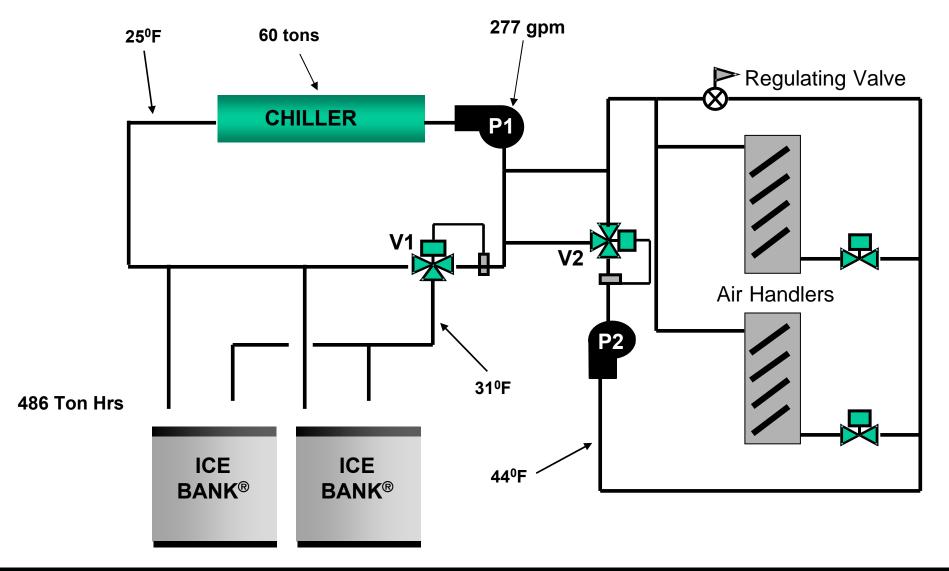
Design Day Profile

- Reduced Electrical Demand
- Drastically Reduced Billed Demand

Rodrick A. Crousey Mechanical Option



Annual kW-h						
85 90 100 Base Ca						
535795	530902	539144	513111			


Demand Peak kW						
85	90	100	Base Case			
241	248	261	281			

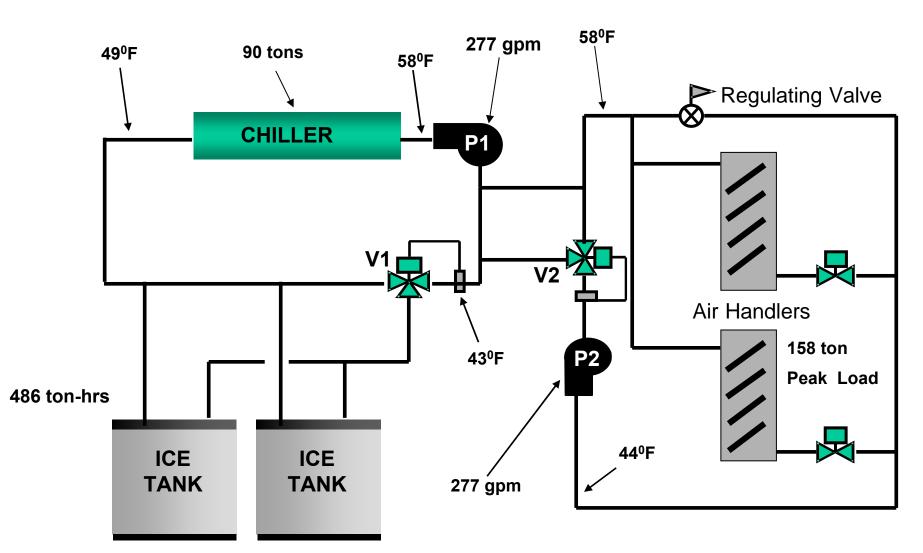
- ➢ 3% Higher kW-hr
- ➤ 12% Lower kW
- ➢ 8% Annual Savings

	Annual E			
85	90	100	Base Case	
35507	36162	37911	39486	Annual Bill (\$)
10%	8%	4%	0%	% Annual Savings
0.066	0.068	0.070	0.077	\$/kW

Ice Storage System Piping Diagram Charging Cycle

Rodrick A. Crousey Mechanical Option

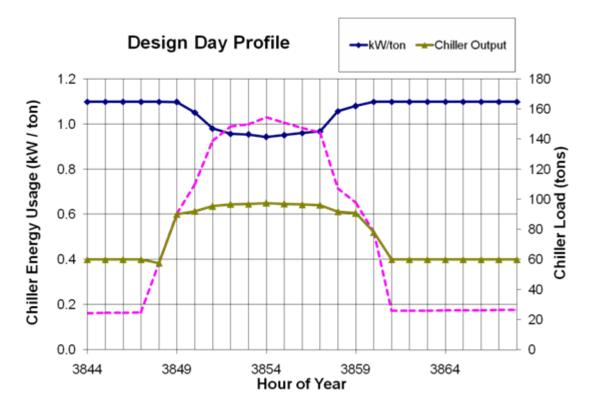
George W. Hays PK-8 Thesis Presentation

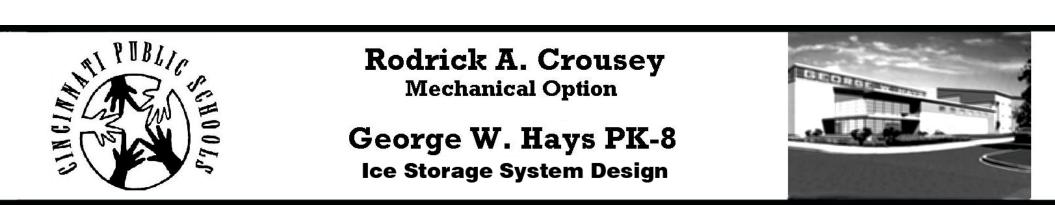

Chiller Conditions 90 tons							IPLV		
	Low T	High T	tons	kW	COP	COPcarnot	η Carnot	kW/ton	kW/ton
Reference	499.7	544.7	89.9	88.9	3.6	11.1	0.3	1.1	
Charging	484.7	544.7	60.0	81.5	2.6	8.1	0.3	1.4	1.3
Discharging	503.7	554.7	90.8	99.8	3.2			1.1	0.9
As Designed	509.7	554.7						1.1	0.8

- Lower supply temperature means higher kW/ton
- Smaller chiller means higher kW/ton
- Increased IPLV

Rodrick A. Crousey Mechanical Option

Ice Storage System Piping Diagram Discharge Cycle




Rodrick A. Crousey Mechanical Option

George W. Hays PK-8 Thesis Presentation

- Floating Chiller Leaving T Only if chiller load capacity is exceeded.
- Increased Chiller Tonnage
- Increased Chiller kW
- Decreased kW / ton

Reliability

➢ Base Case One Chiller, Has No Redundancy

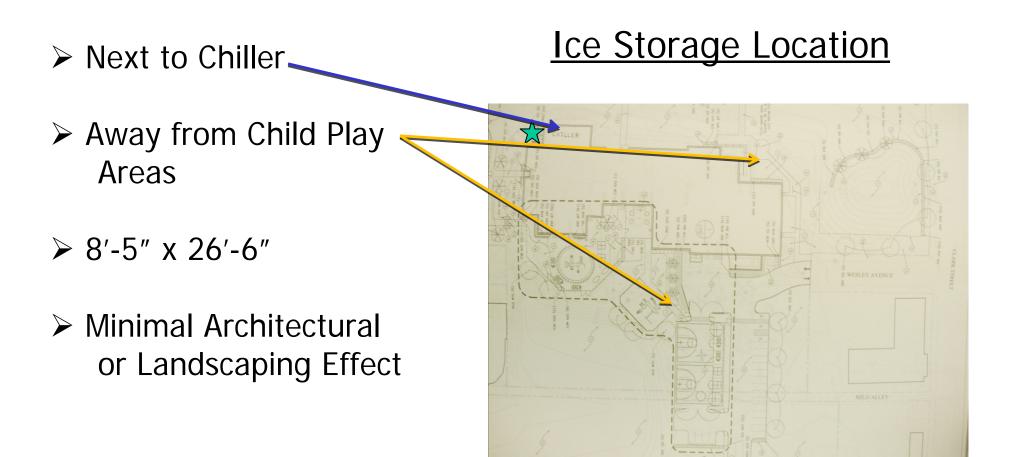
 Ice Storage Has Non-Design Day Redundancy
 Maintain System During Maintenance or Breakdown

➤ Up to 486 ton-hrs

Rodrick A. Crousey Mechanical Option

✓ Building Overview

✓ Ice Storage System Design and Analysis


Location of Ice Storage Tanks

- Electrical Equipment Downsizing
- Cost Payback Analysis

Rodrick A. Crousey Mechanical Option

Rodrick A. Crousey Mechanical Option

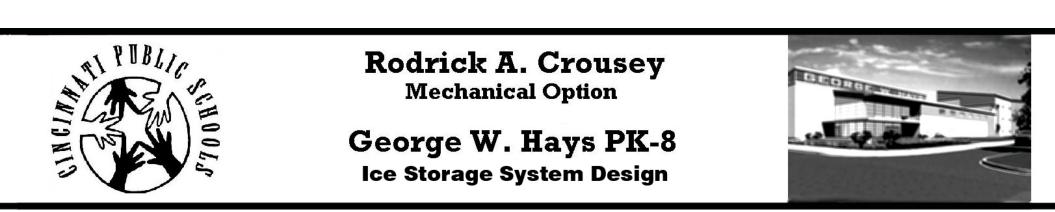
- ✓ Building Overview
- ✓ Ice Storage System Design and Analysis
- ✓ Location of Ice Storage Tanks
- Electrical Equipment Downsizing
 - Cost Payback Analysis

Rodrick A. Crousey Mechanical Option

- Reduced Over-Current Device
- Reduced Conductor Size

Chiller	MCA	MOP	Time Delay	Qty	Wire Gauge	Ground	Conduit
80	164	200	225	1	4/0	#2	2"
90	194	250	250	1	250	#2	2-1/2"
100	218	250	300	1	300	#2	2-1/2"
170	333	450		2	350	#1	2-1/2"

- Reduced Conduit Size
- ▶ \$6,000 Reduced First Cost


- ✓ Building Overview
- ✓ Ice Storage System Design and Analysis
- ✓ Location of Ice Storage Tanks
- ✓ Electrical Equipment Downsizing
- Cost Payback Analysis
 - Conclusion

Rodrick A. Crousey Mechanical Option

			Case	
> 6.0 % Interest		100 ton	90 ton	85 ton
	Extra First Cost	7876	8633	25046
	Annual Savings	1575	3324	3979
\$3,324/yr Savings	i	0.060	0.060	0.060
	n	6.12	2.91	8.14
≥2.91 Year Payback	PV	7876	8633	25046

- ✓ Building Overview
- ✓ Ice Storage System Design and Analysis
- ✓ Structural Slab Addition to Building
- ✓ Electrical Equipment Downsizing
- ✓ Cost Payback Analysis

Rodrick A. Crousey Mechanical Option

Conclusion

- Cost Payback Analysis
 2.91 Year Payback
- Increased Reliability
- Effect on Surrounding Community
 On-Peak Energy Usage
 Energy Consumption
- Ice Storage System Would be Beneficial

Rodrick A. Crousey Mechanical Option

- ✓ Building Overview
- ✓ Ice Storage System Design and Analysis
- ✓ Location of Ice Storage Tanks
- ✓ Electrical Equipment Downsizing
- ✓Cost Payback Analysis
- ✓ Conclusion

Rodrick A. Crousey Mechanical Option

Acknowledgments

William Bahnfleth, PhD, PE

Gary Davies, PE James Freihaut, PhD

Ryan Halvorsen Tim Jones, PE James O'Kelly Mike Sheedy Jelena Srebric, PhD

Lynn Treiss, PE Jamie White The Pennsylvania State University, Architectural Engineering Faculty ThermalTech Engineering Consultants The Pennsylvania State University, Architectural Engineering Faculty Cincinnati Trane, Sales Engineer ThermalTech Engineering Consultants Pittsburgh Trane, Sales Engineer CALMAC Manufacturing Corporation The Pennsylvania State University, Architectural Engineering Faculty ThermalTech Engineering Consultants LLI Engineering

Rodrick A. Crousey Mechanical Option

Summary

Design Day Profile

Compared with 170 ton **Base Case**

> **Greater Reliability Over Life Cycle Cost** Reduction Load Leveling System

Rodrick A. Crousey Mechanical Option

George W. Hays PK-8 Ice Storage System Design

180

160

140

120

0 0 00 00 Chiller Load (kW)

80

60

40

20

0