Technical Assignment 1

The Towers at The City University of New York New York City, New York

Robin Scaramastro
Structural Option
October 6, 2006
AE 481 W
Dr. Memari

Table of Contents

Title Page	1
Table of Contents	2
Executive Summary	3
Codes	4
Structural System Summary	5
Loading Conditions	7
Design Checks	15
Appendix A - Lateral Load Calculations	26
Appendix B - Design Check Calculations	
Eat\|	

Executive Summary

The Towers at the City University of New York is a new residence hall for CUNY students and faculty. It is the first dormitory for the Manhattan college in its 185 year history. The building is located at $130^{\text {th }}$ Street and Saint Nicholas Terrace in the upper west side of New York City. The 11 story building is capable of housing 600 CUNY students and faculty in 165 apartments. The total cost of development and construction of the Towers was $\$ 54$ million. Some of the features of the 185,000 square foot building are fully furnished apartments with private bedrooms, a laundry room, a fitness room, classroom spaces, administrative
 offices, a reception desk that is operational 24 hours a day, and numerous lounge and study spaces. Ground was broken in May 2005 and was completed in August 2006.

The objective of this report is to investigate in depth the existing conditions of the structure of the building. This will include detailed descriptions and evaluations of the concrete columns and beams, spread footing foundations and foundation walls, lateral resisting system, and flat plate floor slabs for the code prescribed gravity and lateral loads. A lateral analysis for wind and seismic loading will be performed using hand calculations to compare to the original design.

The appendices can be found at the end of this report and include more detailed calculations used in determining the forces on the building. Appendix A includes the lateral load calculations and Appendix B includes the design check calculations.

Codes

The following is a list of all applicable codes used in the original design of the Towers. All designs in New York City are governed by the city's own building code. For wind and seismic loading, the Building code references ASCE 7 and The Unified Building Code consecutively.

- The Building Code of the City of New York
- ASCE 7-98, Minimum Design Loads for Buildings and Other Structures, by the American Society of Civil Engineers.
- ACI 318-89, Building Code Requirements for Structural Concrete, by the American Concrete Institute.
- ACI 530-99, Building Code Requirements for Masonry Structures, by the American Concrete Institute
- Manual of Steel Construction, Load Resistance Factor Design, 3rd Edition, by the American Institute of Steel Construction.
- CRSI Handbook 2002, by the Concrete Reinforcing Steel Institute.

Structural System

The structural system that was chosen The Towers is cast in place concrete columns and floor slabs. The slabs are a two-way flat plate system that directly transfer the floor loads to the columns. The penthouse consists of structural steel tube columns, wide flange beams and steel angle bracing.

Materials

Concrete and steel was used in the construction of the towers. The following tables include the strengths of the materials.

Cast in Place Concrete	
Member	Compression Strength (at 28 days)
Elevated slabs	5000 psi NW
Columns	5000 psi NW
Slab on Grade	4000 psi NW
Walls	4000 psi NW
Footings	4000 psi NW
Matt foundation	4000 psi NW
Concrete beams	5000 psi NW

Reinforcing Steel	ASTM Standard	Fy (ksi)
Material	ASTM A615 Grade 60	60
Reinforcing bars	ASTM A487 for sizes D4 and larger	70
Welded Wire Fabric	ASTM A496	70
Deformed bar anchors		

Structural Steel			
Material	ASTM Standard	Fy (ksi)	Fu (ksi)
Wide Flanges	ASTM A992	50	65
Tubes	A500 Grade B	46	58
Plates	A36	36	58
Angles	A36	36	58

Welding electrodes for steel connections are E70XX with a tensile strength of 70ksi. Shear studs for the concrete are $3 / 4$ " diameter Type B with a Fy $=50 \mathrm{ksi}$ and $\quad \mathrm{Fu}=$ 60 ksi . Anchor bolts for HSS column to concrete pier connections are $3 / 4$ " diameter A36 steel.

Foundation

Based on the soil borings and the geotechnical report, a shallow foundation was permissible for The Towers. The soil report indicated that solid bedrock was beneath $6^{\prime}-12^{\prime}$ of firm soils at the site. The slabs and spread footings sit directly on top of the bedrock. Matt slab foundations that range in thickness from $36^{\prime \prime}$ to $42^{\prime \prime}$ are used to support the loads from the concrete shear walls around the stair and elevator cores. The foundation walls are cast in place reinforced concrete atop spread footings. Rectangular spread footings up to $30^{\prime \prime}$ in depth support the gravity load from the concrete columns.

Framing

A cast-in-place concrete system was chosen for The Towers. Rectangular columns are laid out on an irregular grid and large concrete beams are used in the central lobby area of the building that connects the two wings. The beams also support the cantilevered portion of the building at the third floor over the main entrance. The floor slab is tied in to the columns by studrails at each face, and reinforcing bars over the column transfer the floor loads into the columns. The thin brick prefabricated panels that make up the façade of the building are also connected to the top of the slab with steel angles. Expansion joints are used at the edges of the slab where they meet with the exterior wall panels. $2^{\prime \prime}$ seismic expansion joints are also used at the corners of the building.

The penthouse of the building is structural steel. Steel tube columns are used as the columns and W -shapes are used as beams. Bracing is provided by steel angles for the beam to column connections. The penthouse consists of two levels. The floor of the first level is the cast in place roof slab. The second floor framing consists of W24x55 beams. The roof of the penthouse is framed with $\mathrm{W} 12 \times 14$ beams. The exterior girders that carry the floor and roof framing are connected to the columns with moment connections, and are additionally braced with steel angle knee bracing.

Floor Slab

The typical structural slab for all 11 stories of the Towers a is two way 8 " elevated flat plate concrete slab. The slab is reinforced with \#4 bars at 12" on center. Extra bars are provided at column locations for added resistance against shear forces. For the basement, a 4" slab on grade was used. The slab on grade is reinforced with welded wire fabric and is cast over a vapor barrier and $4^{\prime \prime}$ of a porous fill base. The floor system for the first level is the flat plate concrete slab. The floor system of the structural steel penthouse consists of a $4^{1 / 2^{\prime \prime}}$ concrete slab with metal deck.

Lateral Force Resisting System

Lateral loads imposed on the building will be resisted by concrete shear walls located throughout the building. One wall is located in the north wing of the building, and the other walls are around the stair towers and elevator core. The typical structural layout in Figure 1 below illustrates the locations of columns and shear walls. The floor slab acts as a rigid diaphragm to transfer the toads to the lateral force resisting system. The shear walls are $10^{\prime \prime}$ thick and are reinforced with two curtains of rebar.

Figure 1: Typical structural framing plan

LOADING CONDITIONS

GRAVITY LOADS

The following is the list of gravity dead and live loads for each of the building occupancies used in the design of The Towers. These loads are in accordance with the Building Code of the City of New York. The loads listed do not include the weight of the structural members and the live loads are reducible per section 27-566 of the building code. The gravity loads are transferred to the columns directly by the two way flat plate slab.
DORMITORY PSF
Construction Dead Load

- 8" normal weight concrete elevated slab 100
Superimposed Dead Load
- ceiling 4
- floor finish 2
- mechanical/electrical 2
- partitions (100-200 plf) 12
Total Dead Load 120
Live Load
- for partitioned dormitories 40
LOBBY PSF
Construction Dead Load
- 10" normal weight concrete elevated slab 125
Superimposed Dead Load
- ceiling 2
- floor finish 2
- mechanical/electrical 6
Total Dead Load 135
Live Load 100
LOUNGE PSF
Construction Dead Load
- 10" normal weight concrete elevated slab 125
Superimposed Dead Load
- ceiling 2
- floor finish 2
- mechanical/electrical 6
Total Dead Load 135
Live Load 100
Roof (MECHANICAL) PSF
Construction Dead Load
- $8^{\prime \prime}$ normal weight concrete elevated slab 100
Superimposed Dead Load
- ceiling 2
- mechanical/electrical 6
- roofing and insulation 6
Total Dead Load 115
Live Load
- weight of equipment and ponding water 150
Stairs PSF
Dead Load 75
Live Load 100
Exterior Wall Loads PSF
Dead Load
- prefabricated thin brick panels with metal 24
stud back-up wall
- curtain wall system 15

LATERAL LOADS

Lateral loads imposed on The Towers are the result of wind and seismic forces. Per the City Building Code of the City of New York, the wind loads are calculated based on the methods provided in ASCE 7-98 and the seismic loads are calculated based on the UBC Section 2312-1990.

Figure 2: Building components used for lateral load calculations

To simplify the loading for wind, the building will be broken up into three components as shown in Figure 2. Section A, B and C consist of 8, 6, and 11 stories consecutively. Wind loading was calculated for both the north-south and east-west directions. However, since the loading area of the east-west direction is significantly greater than the northsouth direction, the loading diagrams are only shown for the east-west direction.

The following is a summary of the wind and seismic loads, as well as diagrams to illustrate the loading patterns on the building. See Appendix B for complete loading calculations.

Figure 3: Center of rigidity and center of mass for the $5^{\text {th }}$ floor

WIND LOADS

- Basic Wind Speed	$\mathrm{V}=95 \mathrm{mph}$
- Importance Factor	$\mathrm{I}_{\mathrm{W}}=1.0$
	Category 4
- Building Exposure	D
- Mean Roof Height	110'-0'
- Gust Factor (Rigid Structure)	$\mathrm{G}=0.85$
- Topographic Factor	Kzt $=1.0$
- Wind Directionality Factor	$\mathrm{Kd}=0.85$
- Velocity Pressure Coefficients	$\mathrm{Kh}=1.455$
	$\mathrm{Kz}=1.03 \quad 0-15^{\prime}$
	$\mathrm{Kz}=1.08$ ($15-20^{\prime}$
	$\mathrm{Kz}=1.12 \quad 20-25^{\prime}$
	$K z=1.16 \quad 25-30^{\prime}$
	$K z=1.22 \quad 30-40^{\prime}$
	$K z=1.27 \quad 40-50^{\prime}$
	$\mathrm{Kz}=1.31 \quad 50-60^{\prime}$
	$\mathrm{Kz}=1.34$ 60-70'
	$\mathrm{Kz}=1.38 \quad 70-80^{\prime}$
	$K z=1.40 \quad 80-90^{\prime}$
	$K z=1.43$ 90-100'
	$\mathrm{Kz}=1.455 \quad 100-110^{\prime}$
- Internal Pressure Coefficient	GCpi $=+/-0.18$
- Wall Pressure Coefficients	$\mathrm{Cp}=0.8$ (windward)
	Cp $=-0.5$ (leeward \perp 294'-8")
	Cp $=-0.3$ (leeward \perp 144'-4")
	$\mathrm{Cp}=-0.7$ (sidewall)
- Roof Pressure Coefficients	$\mathrm{Cp}=-0.9(0-\mathrm{h})$
	$\mathrm{Cp}=-0.5(\mathrm{~h}-2 \mathrm{~h})$
	$\mathrm{Cp}=-0.3(>2 \mathrm{~h})$

East - West Wind

Loading Diagrams

Figure 4: Wind pressure on Section A

Figure 5: Wind pressure on Section B

Figure 6: Wind pressure on Section C

Story Shears

Story Force	Story Shear
$16.6 \mathrm{k} \longrightarrow$	
	$-16.6 \mathrm{k}$
$37.6 \mathrm{k} \longrightarrow$	
	-54.2k
$28.2 \mathrm{k} \longrightarrow$	-82.4k
$28.0 \mathrm{k} \longrightarrow$	
	-110.4k
$26.9 \mathrm{k} \longrightarrow$	-137.3k
$25.7 \mathrm{k} \longrightarrow$	
	-163k
25.0 k -	

Figure 7: Story forces on Section A

Figure 8: Story forces on section B

Figure 9: Story forces on section C

SEISMIC LOADS

- Seismic Zone Factor
- Site Coefficient
- Importance Factor
- Analysis Procedure
- Plan Structural Irregularities
- Vertical Structural

Irregularities

- Building Height
- Type of Lateral System
$Z=0.15$
$\mathrm{S}_{1}=1.0$
$\mathrm{I}=1.0$
$\mathrm{I}_{\mathrm{p}}=1.0$
Equivalent Lateral Force
No
No
$\mathrm{h}_{\mathrm{n}}=110^{\prime}$
Typical Frame with
Concrete Shear Walls

$$
\begin{aligned}
& \mathrm{R}=5 \\
& \mathrm{C}_{\mathrm{T}}=0.020
\end{aligned}
$$

In calculating the weight of the Towers for seismic forces, 100% of the dead load and 25% of the live load are considere. The resultant story force acts at the center of mass of the floor.

Figure 10: Seismic story forces

Design Checks

All design checks are performed on the $5^{\text {th }}$ level of the building and are compared to the actual design of the Towers. For the gravity framing check, a single bay was chosen to check the flat plate slab and a column. The design loads used in the gravity analysis is 120 psf dead load and 40 psf live load for dormitory occupancy. The load factors used are 1.2DL + 1.6LL.

The lateral framing check will be performed on a shear wall in the stair tower. The shear wall will be checked against seismic loading and the forces will be distributed to the walls by the method of rigidity. For complete

Figure 11: Typical bay used for gravity load checks calculations of the design checks, see Appendix b.

Gravity Loads

Slab Check

Using ACI 318-05, the minimum thickness of the flat plate slab based on deflection criteria is $8^{\prime \prime}$. The minimum reinforcing that is allowable is \#4 reinforcing bars at $12^{\prime \prime}$ centers. The calculated values are the same as what was built. To resist punching shear for the column through the slab, 8 \#6 reinforcing bars are included over the column.

Column Check

The 20 " $\times 40^{\prime \prime}$ exterior column was checked using ACI 318-05. Using Microsoft Excel, an interaction diagram was developed to check the column capacity. By inspection, the maximum loads in the column fall within the limits of the interaction diagram.

LATERAL LOADS

Shear Wall Check

The wind and seismic loads analyzed at the $5^{\text {th }}$ floor and are distributed as shown in Figures 11 and 12 below. The loads are distributed by rigidity and all shear walls are assumed the have equal stiffness. The story force acts at the center of mass of the floor, and the floor rotates about the center of stiffness.

For a shear wall in the stair tower with a $10^{\prime \prime}$ thickness and 54'-6" height, a design calculation was performed, using the larger forces caused by seismic loading. The reinforcing needed for the shear wall is \#6 reinforcing bars at 12 " on center in the longitudinal direction and \#5 reinforcing

Figure 12: Shear wall used for design check calculation bars at $12^{\prime \prime}$ on centers in the transverse direction. This is comparable to was actually designed for this shear wall. The design calls for \#6 vertical bars at 12" on center and \#5 bars at 12 " on center in each face of the wall.

Figure 13: Wind load distribution to shear walls at the $5^{\text {th }}$ floor

Robin Scaramastro
Structural Option
October 5, 2006

The Towers at CCNY
New York City, NY
Advisor: Dr. MEMARI

Figure 14: Seismic load distribution to shear walls at the $5^{\text {th }}$ floor

Appendix A

Lateral Load Calculations

Robin Scaramastro
Structural Option
October 5, 2006

The Towers at CCNY
New York City, NY
Advisor: Dr. Memari

A. 1

Center of Rigidity and Center of Mass

Floors 1-6

Center of Rigidity

X dimension				Y dimension			
	k	X	kx		k	y	ky
1	22.50	38.42	864.38	1	8.83	0.42	3.68
2	22.50	47.25	1063.13	2	8.83	20.58	181.82
3	14.00	107.00	1498.00	3	8.83	61.42	542.51
4	19.50	142.58	2780.37	4	8.83	81.92	723.59
5	19.50	150.58	2936.37	5	8.83	82.75	730.96
6	21.33	141.75	3024.00	6	8.83	104.42	922.34
7	21.33	151.00	3221.33	7	8.83	90.00	795.00
8	23.00	228.17	5247.83	8	8.83	112.58	994.48
9	23.00	237.42	5460.58	9	8.00	92.00	736.00
10	21.00	264.50	5554.50	10	8.00	110.67	885.33
11	21.00	273.25	5738.25	11	17.00	110.33	1875.67
SUM	228.67		37388.74	12	17.17	110.33	1894.06
				SUM	120.83		10285.44
$\mathrm{x}=$		kx $=$	163.51	$\mathrm{y}=$		ky =	85.12
		$\Sigma \mathrm{k}$				$\Sigma \mathrm{k}$	

Center of Mass

X dimension			Y dimension		
Area	x	Ax	Area	y	Ay
5480	53.33	292248	5480	108.25	593210
644	122	78568	644	123.33	79424.5
9733	200.67	1953121	9733	86.92	845992
1640	268.67	440619	1640	128.5	210740
3152	268.83	847352	3152	30.5	96136
20649		3611908	20649		1825503
$\mathrm{x}=$	$\Sigma \mathrm{Ax}=$	174.919	$\mathrm{y}=$	$\Sigma \mathrm{Ay}=$	88.4064
	$\Sigma \mathrm{A}$			$\Sigma \mathrm{A}$	

Robin Scaramastro
Structural Option
October 5, 2006

The Towers at CCNY
New York City, NY
Advisor: Dr. Memari

Floors 7 - 9

Center of Rigidity

X dimension				Y dimension			
	k	x	kx		k	y	ky
1	22.50	38.42	864.38	3	8.83	61.42	542.51
2	22.50	47.25	1063.13	4	8.83	81.92	723.59
3	14.00	107.00	1498.00	5	8.83	82.75	730.96
4	19.50	142.58	2780.37	6	8.83	104.42	922.34
5	19.50	150.58	2936.37	7	8.83	90.00	795.00
6	21.33	141.75	3024.00	8	8.83	112.58	994.48
7	21.33	151.00	3221.33	9	8.00	92.00	736.00
8	23.00	228.17	5247.83	10	8.00	110.67	885.33
9	23.00	237.42	5460.58	11	17.00	110.33	1875.67
SUM	186.67		26095.99	12	17.17	110.33	1894.06
				SUM	103.17		10099.94
	$x=$	$\frac{\mathrm{kx}=}{\Sigma \mathrm{k}}$	139.80		$\mathrm{y}=$	$\begin{gathered} \mathrm{ky}= \\ \hline \Sigma \mathrm{k} \end{gathered}$	97.90

Center of Mass

X dimension			Y dimension		
Area	x	Ax	Area	y	Ay
5480	53.33	292248	5480	108.25	593210
644	122	78568	644	123.33	79424.5
8700	190.67	1658829	8700	86.92	756204
14824		2029645	14824		1428839
$\mathrm{x}=$	$\frac{\Sigma \mathrm{Ax}=}{\Sigma \mathrm{A}}$	136.916	$\mathrm{y}=$	$\frac{\Sigma \mathrm{Ay}=}{5 \mathrm{~A}}$	96.3868

Robin Scaramastro
Structural Option
October 5, 2006

The Towers at CCNY
New York City, NY
Advisor: Dr. Memari

Floor 10 and roof

Center of Rigidity

		nension				nension	
	k	x	kx		k	y	ky
4	19.50	142.58	2780.37	3	8.83	61.42	542.51
5	19.50	150.58	2936.37	4	8.83	81.92	723.59
6	21.33	141.75	3024.00	7	8.83	90.00	795.00
7	21.33	151.00	3221.33	8	8.83	112.58	994.48
8	23.00	228.17	5247.83	9	8.00	92.00	736.00
9	23.00	137.42	3160.58	10	8.00	110.67	885.33
SUM	127.67		20370.49	SUM	51.33		4676.92
$\mathrm{x}=$		kx =	159.56	$\mathrm{y}=$		ky =	91.11
		$\Sigma \mathrm{k}$				$\Sigma \mathrm{k}$	

Center of Mass

X dimension			Y dimension		
Area	x	Ax	Area	y	Ay
8700	190.67	1658829	8700	86.92	756204
8700		1658829	8700		756204
x =	$\begin{gathered} \Sigma \mathrm{Ax}= \\ \Sigma \mathrm{A} \end{gathered}$	190.67	$\mathrm{y}=$	$\begin{gathered} \Sigma \mathrm{Ay}= \\ \Sigma \mathrm{A} \end{gathered}$	86.92

A. 2

Wind Pressures

Velocity Wind Pressure
Windward pressure

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{z}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{~K}_{\mathrm{zt}} \mathrm{~K}_{\mathrm{d}} \mathrm{~V}^{2} \mathrm{I} \\
& \mathrm{q}_{\mathrm{z}}=(0.00256)(1.03)(0.085)(1.0)(95 \mathrm{mph})^{2}(1.0) \\
& \mathrm{q}_{\mathrm{z}}=20.23 \mathrm{psf}
\end{aligned}
$$

Height	kz	qz	
$0-15$	1.03	20.23	psf
$15-20$	1.08	21.21	psf
$20-25$	1.12	22.00	psf
$25-30$	1.16	22.78	psf
$30-40$	1.22	23.96	psf
$40-50$	1.27	24.94	psf
$50-60$	1.31	25.73	psf
$60-70$	1.34	26.32	psf
$70-80$	1.38	27.10	psf
$80-90$	1.4	27.49	psf
$90-100$	1.43	28.08	psf
$100-110$	1.455	28.57	psf

Leeward pressure

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{h}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{~K}_{\mathrm{zt}} \mathrm{~K}_{\mathrm{d}} \mathrm{~V}^{2} \mathrm{I} \\
& \mathrm{q}_{\mathrm{h}}=(0.00256)(1.455)(0.085)(1.0)(95 \mathrm{mph})^{2}(1.0) \\
& \mathrm{q}_{\mathrm{h}}=28.57 \mathrm{psf}
\end{aligned}
$$

Design Wind Pressure
Windward wall

$$
\begin{aligned}
& \mathrm{p}=\mathrm{q}_{\mathrm{z}} \mathrm{GCp}-(\mathrm{GCpi}) \mathrm{q}_{\mathrm{h}} \\
& \mathrm{p}=(20.23 \mathrm{psf})(0.85)(0.8)-(\pm 0.18)(28.57) \\
& \mathrm{p}=13.75 \pm 5.14 \mathrm{psf}
\end{aligned}
$$

Robin Scaramastro
Structural Option
October 5, 2006

The Towers at CCNY
New York City, NY
Advisor: Dr. Memari

Height	qz	p	
0-15	20.23 psf	13.75 +/-	5.14 psf
15-20	21.21 psf	14.42 +/-	5.14 psf
20-25	22.00 psf	14.96 +/-	5.14 psf
25-30	22.78 psf	15.49 +/-	5.14 psf
30-40	23.96 psf	16.29 +/-	5.14 psf
40-50	24.94 psf	16.96 +/-	5.14 psf
50-60	25.73 psf	17.49 +/-	5.14 psf
60-70	26.32 psf	17.89 +/-	5.14 psf
70-80	27.10 psf	18.43 +/-	5.14 psf
80-90	27.49 psf	18.70 +/-	5.14 psf
90-100	28.08 psf	19.10 +/-	5.14 psf
100-110	28.57 psf	19.43 +/-	5.14 psf

Leeward wall with north-south wind

$$
\begin{aligned}
& p=q_{\mathrm{h}} \mathrm{GCp}-(\mathrm{GCpi}) q_{\mathrm{h}} \\
& \mathrm{p}=(28.57 \mathrm{psf})(0.85)(-0.3)-(\pm 0.18)(28.57) \\
& p=-7.28 \pm 5.14 \mathrm{psf}
\end{aligned}
$$

Roof with north south wind

$$
\begin{aligned}
& \frac{h}{L}=\frac{110^{\prime}}{294^{\prime}-8^{\prime \prime}}=0.373 \\
& p=q_{h} G C p-(G C p i) q_{h} \\
& p=(28.57 p s f)(0.85)(-0.9)-(\pm 0.18)(28.57) \\
& p=-21.86 \pm 5.14 p s f \\
& p=q_{h} G C p-(G C p i) q_{h} \\
& p=(28.57 p s f)(0.85)(-0.5)-(\pm 0.18)(28.57) \\
& p=-12.14 \pm 5.14 p s f \\
& p=q_{h} G C p-(G C p i) q_{h} \\
& p=(28.57 p s f)(0.85)(-0.3)-(\pm 0.18)(28.57) \\
& p=-7.28 \pm 5.14 p \mathrm{psf}
\end{aligned}
$$

Leeward wall east-west wind

$$
\begin{aligned}
& p=q_{\mathrm{h}} \mathrm{GCp}-(\mathrm{GCpi}) \mathrm{q}_{\mathrm{h}} \\
& \mathrm{p}=(28.57 \mathrm{psf})(0.85)(-0.5)-(\pm 0.18)(28.57) \\
& \mathrm{p}=12.14 \pm 5.14 \mathrm{psf}
\end{aligned}
$$

Roof with east-west wind

$$
\begin{aligned}
& \frac{h}{L}=\frac{110^{\prime}}{144^{\prime}-4^{\prime \prime}}=0.762 \\
& p=q_{h} G C p-(G C p i) q_{h} \\
& p=(28.57 \mathrm{psf})(0.85)(-0.9)-(\pm 0.18)(28.57) \\
& p=-21.86 \pm 5.14 \mathrm{psf} \\
& p=q_{h} G C p-(G C p i) q_{h} \\
& p=(28.57 p s f)(0.85)(-0.5)-(\pm 0.18)(28.57) \\
& p=-12.14 \pm 5.14 \mathrm{psf} \\
& p=q_{h} G C p-(G C p i) q_{h} \\
& p=(28.57 p s f)(0.85)(-0.3)-(\pm 0.18)(28.57) \\
& p=-7.28 \pm 5.14 \mathrm{psf}
\end{aligned}
$$

A. 3

Seismic Forces

Building Period
$\mathrm{T}=\mathrm{Ct}\left(\mathrm{h}_{\mathrm{n}}\right)^{3 / 4}$
$\mathrm{T}=(0.02)\left(110^{\prime}\right)^{3 / 4}$
$\mathrm{T}=0.679 \mathrm{~s}$

Design Base Shear
$\mathrm{V}=\frac{\mathrm{CvI}}{\mathrm{RT}} \mathrm{w}=\frac{(0.12)(1.0)}{(5)(0.679)}(42700 \mathrm{k})$
$\mathrm{V}=1510$
$\mathrm{Ft}=0.07 \mathrm{VT}=(0.07)(1510 \mathrm{k})(0.679)$
$\mathrm{Ft}=71.7 \mathrm{k}$
$\mathrm{Fi}=\frac{(\mathrm{V}-\mathrm{Ft}) \mathrm{w}_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}}{\sum \mathrm{w}_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}}$

Level	h_{i}	w_{i}	$\mathrm{w}_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}$	F_{i}
1	8.67	2600	22533	15.43
2	18.90	4800	90700	62.12
3	27.56	4900	135056	92.50
4	36.23	4900	177523	121.58
5	44.90	4900	219989	150.67
6	53.56	5000	267813	183.42
7	62.23	3500	217802	149.17
8	70.90	3500	248135	169.95
9	79.56	3600	286425	196.17
10	87.23	2100	183181	125.46
roof	97.90	2200	215371	147.51

$$
\Sigma \mathrm{w}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}}=2064528
$$

Appendix B

Design Check Calculations

B. 1

Slab Check for Gravity Loads

Figure 15: Typical bay used for load calculations

For a dormitory occupancy:

$$
\mathrm{DL}=120 \mathrm{psf}
$$

$$
\mathrm{LL}=40 \mathrm{psf}
$$

$\omega=1.2 \mathrm{DL}+1.6 \mathrm{LL}$
$\omega=1.2(120 \mathrm{psf})+1.6(40 \mathrm{psf})$
$\omega=208 \mathrm{psf}$
$l_{1}=26^{\prime}-3{ }^{1 / 2 \prime \prime}=26.29^{\prime}$
$l_{2}=20^{\prime}$

Clear Span:
$\ln =24^{\prime}-81 / 2^{\prime \prime}=24.71^{\prime}$

Factored Static Moment:
$\mathrm{Mo}=257^{\text {k }}$

Column strip width:
$1 / 41_{1}=1 / 4\left(26.29^{\prime}\right)=6.57^{\prime}$

Middle strip width:
$1 / 21_{1}=1 / 2\left(26.29^{\prime}\right)=13.15^{\prime}$

Figure16: Moment diagram for slab analysis

Using ACI 318-05:
Minimum Thickness = 5" (two way slab without drop panels)

Minimum Thickness $=\frac{\left(20^{\prime}\right)\left(12^{\prime \prime} / 1^{\prime}\right)}{30}=8^{\prime \prime} \Rightarrow$ use $8^{\prime \prime}$ for slab thickness

Static Moment: $\quad \mathrm{Mo}=\frac{\omega \mathrm{l}_{\mathrm{n}} 1_{2}{ }^{2}}{8}=\frac{(208 \mathrm{psf})\left(24.71^{\prime}\right)\left(20^{\prime}\right)^{2}}{8}$

$$
\mathrm{Mo}=257^{\mathrm{k}}
$$

Flat plate construction, therefore no supporting interior or edge beams:

$$
\begin{aligned}
& \alpha_{\mathrm{f} 1}=0 \Rightarrow \alpha_{\mathrm{f} 1} \frac{1_{2}}{1_{2}}=0 \\
& \beta_{\mathrm{t}}=0
\end{aligned}
$$

| End Span Static Moment Distribution per ACI 318-05 | | | |
| :--- | :---: | ---: | ---: | :---: |
| | Distribution
 Factor | Moment | Percentage to
 Column Strip |
| Interior Negative Moment | 0.7 | $180 \mathrm{ft}-\mathrm{k}$ | 100% |
| Exterior Negative Moment | 0.26 | $67 \mathrm{ft}-\mathrm{k}$ | 100% |
| Positive Moment | 0.52 | $134 \mathrm{ft}-\mathrm{k}$ | n / a |

Design slab reinforcement for the maximum moment of $180{ }^{\prime} k$

$$
\begin{aligned}
& 180^{\mathrm{k}}\left(\frac{12^{\prime \prime}}{315.5^{\prime \prime}}\right)=6.84^{\mathrm{k}} / \mathrm{ft} \\
& \mathrm{R}=\frac{6.84^{\mathrm{k}} / \mathrm{ft}}{(0.9)\left(6.5^{\prime \prime}\right)\left(12^{\prime \prime}\right)}=97.5
\end{aligned}
$$

By linear interpolation:

R	ρ
89	0.0015
97.5	0.00164
110	0.0020

$$
\begin{aligned}
& \rho=0.00164<\rho_{\mathrm{MIN}}=0.002 \therefore \text { Use } \rho_{\mathrm{MIN}} \\
& \rho_{\mathrm{MIN}}=0.002 \\
& \mathrm{As}_{\mathrm{MIN}}=(0.002) \mathrm{bd} \\
& \mathrm{As}_{\mathrm{MIN}}=(0.002)\left(6.5^{\prime \prime}\right)\left(12^{\prime \prime}\right) \\
& \mathrm{As}_{\mathrm{MIN}}=0.192 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

Punching Shear

$$
\begin{aligned}
& \mathrm{Vc}=\left(\frac{\alpha \mathrm{d}}{\mathrm{~b}_{\mathrm{o}}}\right) \sqrt{\mathrm{f}^{\prime} \mathrm{c}} \mathrm{~b}_{\mathrm{o}} \mathrm{~d}=\left(\frac{(30)\left(6.5^{\prime \prime}\right)}{112^{\prime \prime}}\right) \sqrt{5000 \mathrm{psi}}\left(112^{\prime \prime}\right)\left(6.5^{\prime \prime}\right) \\
& \mathrm{Vc}=89.6 \mathrm{k} \\
& \phi \mathrm{Vc}=0.75(89.6 \mathrm{k})=67.2 \mathrm{k} \\
& \mathrm{Vu}=\omega\left(\mathrm{l}^{2}-\mathrm{b}^{2}\right)=(208 \mathrm{psf})\left(27.357^{2}-3^{2}\right) \\
& \mathrm{Vu}=154 \mathrm{k} \\
& \mathrm{Vs}=\frac{\mathrm{Vu}-\phi \mathrm{Vc}}{\phi}=\frac{154 \mathrm{k}-67.2 \mathrm{k}}{0.75} \\
& \mathrm{Vs}=115.7 \mathrm{k} \\
& \mathrm{Av}=\frac{\mathrm{Vs}}{\mathrm{fy}(\sin \phi)}=\frac{115.7 \mathrm{k}}{(60 \mathrm{ksi})(\sin (45))} \\
& \mathrm{Av}=2.73 \mathrm{in}{ }^{2}
\end{aligned}
$$

Provide an additional (8) \#6 reinforcing bars in the column strip to resist punching shear ($A s=3.52 \mathrm{in}^{2}$)

B. 2

Column Check for Gravity Loads

$$
\begin{array}{rrlll}
\mathrm{f}^{\prime} \mathrm{v} & = & 5 & \mathrm{ksi} \\
\mathrm{fy} & = & 60 \text { ksi } & & \\
\mathrm{As} & = & 0.79 & \text { in2 } & \mathrm{n}= \\
\mathrm{b} & = & 20 & \text { in2 } & \\
\mathrm{d} & = & 40 \text { in2 } &
\end{array}
$$

To determine if the column is adequate, the column axial load and moment must be plotted on the interaction diagram.

Axial Load on Column

$$
\mathrm{Pn}=(273 \mathrm{sf})(208 \mathrm{psf})=60 \mathrm{k}
$$

Moment on Column
$\mathrm{Mu}=67^{\mathrm{k}}$

Robin Scaramastro
Structural Option
October 5, 2006

The Towers at CCNY
New York City, NY
Advisor: Dr. Memari

B. 3

Lateral System Check

Wind LoAds

Wind Shear Wall Analysis Floors 1-6										
Centroid	$\mathrm{x}=$			Σ kiy $=$	228.67					
	$\mathrm{y}=$	88.41	ft							
Load	$\mathrm{P}=$	238.00	k	$\mathrm{e}=$	-11.41					
Moment	$\mathrm{M}=$	-2715.97	$\mathrm{ft}-\mathrm{k}$							
Wall	$\mathrm{k}_{\text {iy }}$	$\mathrm{k}_{\text {ix }}$	x_{i}	$\mathrm{yi}^{\text {i }}$	d_{i}	di^{2}	$\mathrm{k}_{\mathrm{i}} \mathrm{d}^{2}{ }^{2}$	$\mathrm{F}_{\mathrm{i} \text {,direct }}$	$\mathrm{F}_{\mathrm{i} \text {, torsion }}$	$\mathrm{F}_{\mathrm{i} \text {,total }}$
1	22.50		38.42		136.50	18633	419242	23.42	-5.250	18.168
2	22.50		47.25		127.67	16299	366738	23.42	-4.910	18.508
3	14.00		107.00		67.92	4613	64582	14.57	-1.625	12.946
4	19.50		142.58		32.34	1046	20390	20.30	-4.753	15.543
5	19.50		150.58		24.34	592	11549	20.30	-0.811	19.485
6	21.33		141.75		33.17	1100	23471	22.20	-1.210	20.994
7	21.33		151.00		23.92	572	12205	22.20	-0.872	21.332
8	23.00		228.17		-53.25	2835	65212	23.94	2.093	26.032
9	23.00		237.42		-62.50	3906	89836	23.94	2.457	26.396
10	21.00		264.50		-89.58	8025	168519	21.86	3.216	25.073
11	21.00		273.25		-98.33	9669	203047	21.86	3.530	25.387
12		8.83		0.42	87.99	7742	68389	0.00	-1.329	-1.329
13		8.83		20.58	67.82	4600	40633	0.00	-1.024	-1.024
14		8.83		61.42	26.99	728	6435	0.00	-0.408	-0.408
15		8.83		81.92	6.49	42	372	0.00	-0.098	-0.098
16		8.83		82.75	5.66	32	283	0.00	-0.085	-0.085
17		8.83		104.42	-16.01	256	2264	0.00	0.242	0.242
18		8.83		90.00	-1.59	3	22	0.00	0.024	0.024
19		8.83		112.58	-24.18	585	5163	0.00	0.365	0.365
20		8.00		92.00	-3.59	13	103	0.00	0.049	0.049
21		8.00		110.67	-22.26	496	3964	0.00	0.304	0.304
22		17.00		110.33	-21.93	481	8173	0.00	0.637	0.637
23		17.17		110.33	-21.93	481	8254	0.00	0.643	0.643

Robin Scaramastro
Structural Option
October 5, 2006

The Towers at CCNY
New York City, NY
Advisor: Dr. Memari

SEISMIC LOADS

Checking the shear wall for worst case, therefore earthquake load controls

Assuming the shear wall is s the same stiffness throughout the whole height:

Total Base Shear $=1380 \mathrm{k}$
Shear wall takes 146k
Figure 17: Shear wall used for design check calculation

$$
\begin{aligned}
& \mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi} \\
& \rho_{\mathrm{l}}=0.0025 \\
& \rho_{\mathrm{t}}=0.0020
\end{aligned}
$$

$\mathrm{A}_{\mathrm{sl}}=(0.0025)\left(10^{\prime \prime}\right)\left(12^{\prime \prime}\right)$
$\mathrm{A}_{\mathrm{sl}}=0.30 \mathrm{in}^{2} \Rightarrow$ Use \#6 longitudinal bars at $12^{\prime \prime}$ on center in both faces of wall
$\mathrm{A}_{\text {st }}=(0.002)\left(10^{\prime \prime}\right)\left(12^{\prime \prime}\right)$
$\mathrm{A}_{\text {st }}=0.24 \mathrm{in}^{2} \Rightarrow$ Use \#5 transverse bars at $1 \mathbf{1 2}^{\prime \prime}$ on center in both faces of wall

